Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37887986

RESUMO

Osmotically assisted reverse osmosis (OARO) is an innovative process that shows promising potential in the treatment of brine produced by conventional reverse osmosis (RO) systems. This study presents a theoretical and experimental analysis of the OARO process, focusing on its application to achieve minimum liquid discharge (MLD). This theoretical analysis includes the development of a mathematical model to describe the transport phenomena occurring during OARO. By considering mass balance equations coupled with transport equations, the theoretical model allows for the simulation of a full-scale system consisting of a single-stage RO and a four-stage OARO. Experimental investigations are also conducted to validate the theoretical model and to evaluate the performance of the OARO process. A laboratory-scale OARO system is designed and operated using a synthetic RO brine. Various operating conditions, including applied pressure, feed concentration, and draw concentration, are varied to investigate their effects on process performance. The experimental results demonstrate the feasibility of OARO as an MLD solution and also validate the predictions of the theoretical model, confirming its reliability for process optimization and design. The results of the theoretical analysis show that OARO has the potential to significantly improve water recovery compared to conventional RO. Based on the simulation, the optimal operating conditions are explored, leading to a significant reduction (up to 89%) in the volume of brine discharge.

2.
Membranes (Basel) ; 13(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37103819

RESUMO

There is increasing interest in membrane systems powered by renewable energy sources, including solar and wind, that are suitable for decentralized water supply in islands and remote regions. These membrane systems are often operated intermittently with extended shutdown periods to minimize the capacity of the energy storage devices. However, relatively little information is available on the effect of intermittent operation on membrane fouling. In this work, the fouling of pressurized membranes under intermittent operation was investigated using an approach based on optical coherence tomography (OCT), which allows non-destructive and non-invasive examination of membrane fouling. In reverse osmosis (RO), intermittently operated membranes were investigated by OCT-based characterization. Several model foulants such as NaCl and humic acids were used, as well as real seawater. The cross-sectional OCT images of the fouling were visualized as a three-dimensional volume using Image J. The OCT images were used to quantitatively measure the thickness of foulants on the membrane surfaces under different operating conditions. The results showed that intermittent operation retarded the flux decrease due to fouling compared to continuous operation. The OCT analysis showed that the foulant thickness was significantly reduced by the intermittent operation. The decrease in foulant layer thickness was found to occur when the RO process was restarted in intermittent operation.

3.
Membranes (Basel) ; 13(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36984703

RESUMO

Combined cycle power plants (CCPPs) use large amounts of water withdrawn from nearby rivers and generate wastewater containing ions and pollutants. Despite the need for wastewater reclamation, few technologies can successfully convert the wastewater into make-up water for CCPPs. Therefore, this study aimed to apply capacitive deionization (CDI) for wastewater reclamation in CCPPs. Using a bench-scale experimental unit, which included ion exchange membranes and carbon electrodes, response surface methodology (RSM) was used to optimize the operating conditions of the CDI process to increase the total dissolved solids (TDS) removal and product water ratio. The optimal conditions were found to be a voltage of 1.5 V, a flow rate of 15 mL/min, and an adsorption/desorption ratio of 1:0.8. The changes in CDI performance with time were also studied, and the foulants on the membranes, spacers, and electrodes were examined to understand the fouling mechanism. The TDS removal decreased from 93.65% to 55.70% after 10 days of operation due to the deposition of scale and organic matter. After chemical cleaning, the TDS removal rate recovered to 93.02%, which is close to the initial condition.

4.
Membranes (Basel) ; 11(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200725

RESUMO

The optimization of the properties for MD membranes is challenging due to the trade-off between water productivity and wetting tendency. Herein, this study presents a novel methodology to examine the properties of MD membranes. Seven polyvinylidene fluoride (PVDF) membranes were synthesized under different conditions by the phase inversion method and characterized to measure flux, rejection, contact angle (CA), liquid entry pressure (LEP), and pore sizes. Then, water vapor permeability (Bw), salt leakage ratio (Lw), and fiber radius (Rf) were calculated for the in-depth analysis. Results showed that the water vapor permeability and salt leakage ratio of the prepared membranes ranged from 7.76 × 10-8 s/m to 20.19 × 10-8 s/m and from 0.0020 to 0.0151, respectively. The Rf calculated using the Purcell model was in the range from 0.598 µm to 1.690 µm. Since the Rf was relatively small, the prepared membranes can have high LEP (more than 1.13 bar) even at low CA (less than 90.8°). The trade-off relations between the water vapor permeability and the other properties could be confirmed from the results of the prepared membranes. Based on these results, the properties of an efficient MD membrane were suggested as a guideline for the membrane development.

5.
Membranes (Basel) ; 6(1)2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26729176

RESUMO

This study seeks to evaluate the performance and economic feasibility of the forward osmosis (FO)-reverse osmosis (RO) hybrid process; to propose a guideline by which this hybrid process might be more price-competitive in the field. A solution-diffusion model modified with film theory was applied to analyze the effects of concentration polarization, water, and salt transport coefficient on flux, recovery, seawater concentration, and treated wastewater of the FO process of an FO-RO hybrid system. A simple cost model was applied to analyze the effects of flux; recovery of the FO process; energy; and membrane cost on the FO-RO hybrid process. The simulation results showed that the water transport coefficient and internal concentration polarization resistance are very important factors that affect performance in the FO process; however; the effect of the salt transport coefficient does not seem to be large. It was also found that the flux and recovery of the FO process, the FO membrane, and the electricity cost are very important factors that influence the water cost of an FO-RO hybrid system. This hybrid system can be price-competitive with RO systems when its recovery rate is very high, the flux and the membrane cost of the FO are similar to those of the RO, and the electricity cost is expensive. The most important thing in commercializing the FO process is enhancing performance (e.g.; flux and the recovery of FO membranes).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...