Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(2): 2704-2717, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297793

RESUMO

A better understanding of the formation of femtosecond (fs) laser-induced surface structures is key to the control of their morphological profiles for desired surface functionalities on metals. In this work, with fs laser pulse irradiation, the two stages of formation mechanisms of the columnar structures (CSs) grown above the surface level are investigated on pure Al plates in ambient air. Here, we find that the redeposition of ablated microscale clusters following fs laser pulses of irradiation acts as the nucleation sites of CS formation, which strongly affects their location and density within the laser spot. Furthermore, we suggest their structural growths and morphological shape changes are directly associated with the competition among four laser-impact hydrodynamical phenomena: laser ablation, subsequent molten metal flow, particles' redeposition, and metal vapor condensation with continued pulse irradiation.

2.
Opt Express ; 31(2): 1776-1786, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785205

RESUMO

Structurally colored materials present potential technological applications including anticounterfeiting tags for authentication due to the ability to controllably manipulate colors through nanostructuring. Yet, no applications of deep learning algorithms, known to discover meaningful structures in data with far-reaching optimization capabilities, to such optical authentication applications involving low-spatial-frequency laser-induced periodic surface structures (LSFLs) have been demonstrated to date. In this work, by fine-tuning one of the lightweight convolutional neural networks, MobileNetV1, we investigate the optical authentication capabilities of the structurally colorized images on metal surfaces fabricated by controlling the orientation of femtosecond LSFLs. We show that the structural color variations due to a broad range of the illumination incident angles combined with both the controlled orientations of LSFLs and differences in features captured in the image make this system suitable for deep learning-based optical authentication.

3.
Nanomaterials (Basel) ; 11(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443841

RESUMO

We investigated the colorimetric behaviors of metal surfaces with unidirectional low-spatial-frequency laser-induced periodic surface structures (UD-LSFLs) and omnidirectional LSFLs (OD-LSFLs) fabricated using femtosecond laser pulse irradiation. With the CIE standard illuminant D65, incident at -45°, we show that UD-LSFLs on metals transform polished metals to gonio-apparent materials with a unique behavior of colorimetric responses, depending on both the detection and rotation angles, whereas OD-LSFLs have nearly uniform gonio-apparent colors at each detection angle, regardless of their rotation. These colorimetric behaviors can be observed not only at the angles of diffraction but also near the angle of reflection, and we find that the power redistribution due to Rayleigh anomalies also plays an important role in the colorimetric responses of UD- and OD-LSFLs, in addition to diffraction.

4.
Nanoscale ; 10(22): 10343-10350, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29737349

RESUMO

A better understanding of charge carrier dynamics in graphene is key to improvement of its electronic performance. Here, we present direct space-time visualization of carrier relaxation and diffusion in monolayer graphene using time-resolved scanning electron microscopy techniques. We observed striking fluence-dependent dynamic images, changing from a Gaussian shape to a novel crater-shaped pattern with increasing laser fluence. Such direct observation of dynamic changes in spatial charge distribution is not readily available from the conventional spectroscopic approaches, which reflect essentially overall effective carrier temperature and density. According to our analysis, for this crater-shaped carrier density to occur in aggregated electron-hole pairs in the high fluence regime there exists an unconventional Auger-assisted carrier recombination process to provide effective relaxation channels, most likely involving emission of optical phonons and plasmons, which is dynamically accessible due to a strong temporal overlap among them. The presented model allows us to successfully account for these unexpected phenomena and to quantitatively analyze the observed spatiotemporal behavior.

5.
Materials (Basel) ; 10(1)2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28772364

RESUMO

It is extremely difficult to predict the initiation time of cracking due to a large time spread in most cracking experiments. Thus, probabilistic models, such as the Weibull distribution, are usually employed to model the initiation time of cracking. Therefore, the parameters of the Weibull distribution are estimated from data collected from a cracking test. However, although the development of a reliable cracking model under ideal experimental conditions (e.g., a large number of specimens and narrow censoring intervals) could be achieved in principle, it is not straightforward to quantitatively assess the effects of the ideal experimental conditions on model estimation uncertainty. The present study investigated the effects of key experimental conditions, including the time-dependent effect of the censoring interval length, on the estimation uncertainties of the Weibull parameters through Monte Carlo simulations. The simulation results provided quantified estimation uncertainties of Weibull parameters in various cracking test conditions. Hence, it is expected that the results of this study can offer some insight for experimenters developing a probabilistic crack initiation model by performing experiments.

6.
Proc Natl Acad Sci U S A ; 111(6): 2094-9, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24469803

RESUMO

Four-dimensional scanning ultrafast electron microscopy is used to investigate doping- and carrier-concentration-dependent ultrafast carrier dynamics of the in situ cleaved single-crystalline GaAs(110) substrates. We observed marked changes in the measured time-resolved secondary electrons depending on the induced alterations in the electronic structure. The enhancement of secondary electrons at positive times, when the electron pulse follows the optical pulse, is primarily due to an energy gain involving the photoexcited charge carriers that are transiently populated in the conduction band and further promoted by the electron pulse, consistent with a band structure that is dependent on chemical doping and carrier concentration. When electrons undergo sufficient energy loss on their journey to the surface, dark contrast becomes dominant in the image. At negative times, however, when the electron pulse precedes the optical pulse (electron impact), the dynamical behavior of carriers manifests itself in a dark contrast which indicates the suppression of secondary electrons upon the arrival of the optical pulse. In this case, the loss of energy of material's electrons is by collisions with the excited carriers. These results for carrier dynamics in GaAs(110) suggest strong carrier-carrier scatterings which are mirrored in the energy of material's secondary electrons during their migration to the surface. The approach presented here provides a fundamental understanding of materials probed by four-dimensional scanning ultrafast electron microscopy, and offers possibilities for use of this imaging technique in the study of ultrafast charge carrier dynamics in heterogeneously patterned micro- and nanostructured material surfaces and interfaces.

7.
Nano Lett ; 12(6): 3018-24, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22577895

RESUMO

We have investigated the initial stages of growth and the electronic structure of C(60) molecules on graphene grown epitaxially on SiC(0001) at the single-molecule level using cryogenic ultrahigh vacuum scanning tunneling microscopy and spectroscopy. We observe that the first layer of C(60) molecules self-assembles into a well-ordered, close-packed arrangement on graphene upon molecular deposition at room temperature while exhibiting a subtle C(60) superlattice. We measure a highest occupied molecular orbital-lowest unoccupied molecular orbital gap of ∼3.5 eV for the C(60) molecules on graphene in submonolayer regime, indicating a significantly smaller amount of charge transfer from the graphene to C(60) and substrate-induced screening as compared to C(60) adsorbed on metallic substrates. Our results have important implications for the use of graphene for future device applications that require electronic decoupling between functional molecular adsorbates and substrates.


Assuntos
Compostos Inorgânicos de Carbono/química , Fulerenos/química , Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos de Silício/química , Transporte de Elétrons , Teste de Materiais , Tamanho da Partícula
8.
ACS Nano ; 5(5): 3607-13, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21500843

RESUMO

We have investigated the effects of thermal annealing on ex-situ chemically vapor deposited submonolayer graphene islands on polycrystalline Cu foil at the atomic-scale using ultrahigh vacuum scanning tunneling microscopy. Low-temperature annealed graphene islands on Cu foil (at ∼430 °C) exhibit predominantly striped Moiré patterns, indicating a relatively weak interaction between graphene and the underlying polycrystalline Cu foil. Rapid high-temperature annealing of the sample (at 700-800 °C) gives rise to the removal of Cu oxide and the recovery of crystallographic features of the copper that surrounds the intact graphene. These experimental observations of continuous crystalline features between the underlying copper (beneath the graphene islands) and the surrounding exposed copper areas revealed by high-temperature annealing demonstrates the impenetrable nature of graphene and its potential application as a protective layer against corrosion.


Assuntos
Cobre/química , Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Dureza , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
9.
ACS Nano ; 5(5): 3701-6, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21480634

RESUMO

We have used scanning tunneling microscopy, Auger electron spectroscopy, and density functional theory calculations to investigate thermal and photoinduced structural transitions in (fulvalene)tetracarbonyldiruthenium molecules (designed for light energy storage) on a Au(111) surface. We find that both the parent complex and the photoisomer exhibit striking thermally induced structural phase changes on Au(111), which we attribute to the loss of carbonyl ligands from the organometallic molecules. Density functional theory calculations support this conclusion. We observe that UV exposure leads to pronounced structural change only in the parent complex, indicative of a photoisomerization reaction.


Assuntos
Ouro/química , Ouro/efeitos da radiação , Modelos Químicos , Compostos Orgânicos/química , Compostos Orgânicos/efeitos da radiação , Simulação por Computador , Transferência de Energia/efeitos da radiação , Luz , Temperatura
10.
J Chem Phys ; 133(23): 234707, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21186884

RESUMO

We have used scanning tunneling microscopy to investigate the structure and photoswitching behavior of azobenzene molecules functionalized with bulky spacer groups and adsorbed onto Au(111). We find that positioning tert-butyl "legs" in a canted arrangement on the azobenzene phenyl rings quenches photoisomerizability of the molecule on Au(111). Addition of cyano groups at the para positions changes the molecular self-assembly significantly, but does not alter the quenched photoisomerizability. This behavior likely arises from a combination of molecule-surface interactions, molecule-molecule interactions, and alteration of azobenzene electronic structure resulting from the position-specific addition of tert-butyl groups.


Assuntos
Compostos Azo/química , Ouro/química , Processos Fotoquímicos , Adsorção , Ligação de Hidrogênio , Microscopia de Tunelamento , Propriedades de Superfície
11.
Phys Rev Lett ; 104(17): 178301, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20482149

RESUMO

Single-molecule-resolved scanning tunneling microscopy of tetra-tert-butyl azobenzene (TTB-AB) molecules adsorbed onto Au(111) reveals chirality selection rules in their photoswitching behavior. This observation is enabled by the fact that trans-TTB-AB molecules self-assemble into homochiral domains. Cis-TTB-AB molecules produced via photoisomerization are found in two distinct conformations with final state chirality determined by the initial trans isomer chirality. Based on these observations and ab initio calculations, we propose a new inversion-based dynamical photoswitching mechanism for azobenzene molecules at a surface.

12.
J Chem Phys ; 131(3): 034707, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19624221

RESUMO

We have investigated the temperature-dependent behavior of thiolated azobenzene molecules on Au(111) using scanning tunneling microscopy. The addition of a thiol functional group to azobenzene molecules leads to increased surface anchoring of single azobenzene molecules to gold. Thiolated azobenzene shows diverse surface morphology and does not form well-ordered structures at low coverage. At elevated temperatures, anchored molecules are observed to spin in place via hindered rotation. By measuring the number of rotating molecules as a function of temperature and using a simple model, we are able to estimate the energy barrier and attempt frequency for thermally induced hindered rotation to be 102+/-3 meV and 110+/-2 GHz, respectively.


Assuntos
Compostos Azo/química , Ouro/química , Compostos de Sulfidrila/química , Termodinâmica , Tamanho da Partícula , Propriedades de Superfície
13.
Nano Lett ; 9(3): 935-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19193016

RESUMO

Photomechanical switching (photoisomerization) of molecules at a surface is found to strongly depend on molecule-molecule interactions and molecule-surface orientation. Scanning tunneling microscopy was used to image photoswitching behavior in the single-molecule limit of tetra-tert-butyl-azobenzene molecules adsorbed onto Au(111) at 30 K. Photoswitching behavior varied strongly with surface molecular island structure, and self-patterned stripes of switching and nonswitching regions were observed having approximately 10 nm pitch. These findings can be summarized into photoswitching selection rules that highlight the important role played by a molecule's nanoscale environment in determining its switching properties.


Assuntos
Nanotecnologia/instrumentação , Propriedades de Superfície , Adsorção , Algoritmos , Ouro/química , Luz , Microscopia de Tunelamento/métodos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Nanoestruturas/química , Nanotecnologia/métodos , Temperatura , Raios Ultravioleta
14.
Phys Rev Lett ; 99(3): 038301, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17678335

RESUMO

We have observed reversible light-induced mechanical switching for individual organic molecules bound to a metal surface. Scanning tunneling microscopy (STM) was used to image the features of individual azobenzene molecules on Au(111) before and after reversibly cycling their mechanical structure between trans and cis states using light. Azobenzene molecules were engineered to increase their surface photomechanical activity by attaching varying numbers of tert-butyl (TB) ligands ("legs") to the azobenzene phenyl rings. STM images show that increasing the number of TB legs "lifts" the azobenzene molecules from the substrate, thereby increasing molecular photomechanical activity by decreasing molecule-surface coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...