Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 24(1): 217, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844985

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory condition characterized by the accumulation of reactive oxygen species and the expression of inflammatory factors. Regarding its anti-atopic activity, numerous traditional medicinal materials and secondary metabolic products play pivotal roles in modulating the associated mechanisms. METHODS: This study aimed to utilize Salvia miltiorrhiza Bunge (SMB) as an anti-AD source. In-vitro activity assessments and qualitative and quantitative analyses using UPLC-TQ-MS/MS and HPLC-DAD were conducted in two cultivars ('Dasan' and 'Kosan'). Statistical analysis indicated that the profiles of their secondary metabolites contribute significantly to their pharmacological properties. Consequently, bio-guided fractionation was undertaken to figure out the distinct roles of the secondary metabolites present in SMB. RESULTS: Comparative study of two cultivars indicated that 'Dasan', having higher salvianolic acid A and B, exhibited stronger antioxidant and anti-inflammatory activities. Meanwhile, 'Kosan', containing higher tanshinones, showed higher alleviating activities on anti-AD related genes in mRNA levels. Additionally, performed bio-guided fractionation re-confirmed that the hydrophilic compounds of SMB can prevent AD by inhibiting accumulation of ROS and suppressing inflammatory factors and the lipophilic components can directly inhibit AD. CONCLUSIONS: SMB was revealed as a good source for anti-AD activity. Several bioactive compounds were identified from the UPLC-TQ-MS/MS and different compounds content was linked to biological activities. Characterization of these compounds may be helpful to understand differential role of secondary metabolites from SMB on alleviation of AD.


Assuntos
Anti-Inflamatórios , Dermatite Atópica , Extratos Vegetais , Salvia miltiorrhiza , Salvia miltiorrhiza/química , Dermatite Atópica/tratamento farmacológico , Extratos Vegetais/farmacologia , Humanos , Anti-Inflamatórios/farmacologia , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo
2.
Antioxidants (Basel) ; 12(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001762

RESUMO

The Lamiaceae family is widely recognized for its production of essential oils and phenolic compounds that have promising value as pharmaceutical materials. However, the impact of environmental conditions and different harvest stages on the phytochemical composition of Lamiaceae plants remains poorly understood. This study aimed to investigate the effects of harvest time on the phytochemical composition, including rosmarinic acid (RA) and volatile organic compounds (VOCs), of four Lamiaceae plants-Korean mint (AR), lemon balm (MO), opal basil (OBP), and sage (SO)-and was conducted under an environment-controlled system. Although all four plants had RA as the dominant compound, its distribution varied by species. The flowered plants, including AR and OBP, exhibited a rapid increase of RA during the transition from the vegetative stage to the reproductive stage. In contrast, non-flowered groups, including MO and SO, showed a steady increase in the content of total phenolics and RA. The main components of VOCs also differed depending on the plant, with characteristic fragrance compounds identified for each one (AR: estragole; MO: (Z)-neral and geranial; OBP: methyl eugenol, eugenol, and linalool; and SO: (Z)-thujone, camphor, and humulene). The total VOCs content was highest on the 60th day after transplanting regardless of the species, while the trends of total phenolics, RA content, and antioxidant activities were different depending on whether plant species flowered during the cultivation cycle. There was a steady increase in species that had not flowered, and the highest content and activity of the flowering period were confirmed in the flowering plant species.

3.
Front Plant Sci ; 14: 1124827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025137

RESUMO

The metabolome of strawberries at harvest determines their storage capacity. Therefore, dynamics of volatile production during storage of strawberry cultivated under diverse drainage ratios, T1 (12.0%), T2 (25.3%), T3 (36.4%), and T4 (56.5%), were evaluated. Among the various non-target VOCs analysis, there were some groups including aldehydes, esters, and furans occupied over 5% with exhibiting high coefficient of determination (R2 ) following the days after storage (DAS). Aldehydes content decreased over the storage period, while the esters (methyl butanoate, methyl hexanoate, ethyl hexanoate, and benzyl acetate) and furanones (furaneol and mesifuran) were increased as representing aroma compounds in strawberry ripening. Even on the same day, it was investigated that the release of VOCs linked to fruit decay was delayed in the groups (T1 and T2) that were given relatively little water compared to T3 and T4. The hexanal and ethyl hexanoate as an over-ripened signal showed a rapid increase from 4 DAS to 5 DAS in T3 and T4, respectively, while T1 and T2 showed significant increase from 5 DAS to 6 DAS. Relatively slower over-ripening tendency of T1 and T2 was supported by changes of firmness, total soluble solid content, anthocyanin content, and antioxidant activity during storage. T1 and T2 showed higher antioxidant activity at the harvest time and lower anthocyanin accumulation than T3 and T4. The present study elucidated that the preharvest drainage changes during cultivation was involved in fruit quality during strawberry storage. Besides, volatilomics analysis depicted that T2 as an optimal ratio, could delay the occurrence of stress and senescence, and guaranteed the strawberry yield. In conclusion, this study provided evidence that the practical application of drainage ratios could improve horticultural product quality even with low water use and VOCs might be considered an early indicator for strawberry fruit shelf-life.

4.
Antioxidants (Basel) ; 10(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34439431

RESUMO

The effect of salt treatment on Brassica carinata (BC) microgreens grown under different light wavelengths on glucosinolates (GLs) and phenolic compounds were evaluated. Quantifiable GLs were identified using ultra-high performance-quadrupole time of flight mass spectrometry. Extracts' ability to activate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) was evaluated on human colorectal carcinoma cells (HCT116). Furthermore, BC compounds' ability to activate expression of nuclear transcription factor-erythroid 2 related factor (Nrf2) and heme-oxygenase-1 (HO-1) proteins was examined using specific antibodies on HCT116 cells. Sinigrin (SIN) was the abundant GLs of the six compounds identified and its content together with total aliphatic GLs increased in saline conditions. Fluorescent (FL) and blue plus red (B1R1) lights were identified as stable cultivation conditions for microgreens, promoting biomass and glucobrassicin contents, whereas other identified individual and total indole GLs behaved differently in saline and non-saline environments. Blue light-emitting diodes and FL light in saline treatments mostly enhanced SIN, phenolics and antioxidant activities. The increased SOD and CAT activities render the BC microgreens suitable for lowering oxidative stress. Additionally, activation of Nrf2, and HO-1 protein expression by the GLs rich extracts, demonstrate their potential to treat and prevent oxidative stress and inflammatory disorders. Therefore, effective salt treatments and light exposure to BC microgreens present an opportunity for targeted regulation of growth and accumulation of bioactive metabolites.

5.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360554

RESUMO

Leaf angle and grain size are important agronomic traits affecting rice productivity directly and/or indirectly through modulating crop architecture. OsBC1, as a typical bHLH transcription factor, is one of the components comprising a complex formed with LO9-177 and OsBUL1 contributing to modulation of rice leaf inclination and grain size. In the current study, two homologues of OsBC1, OsBCL1 and OsBCL2 were functionally characterized by expressing them under the control of OsBUL1 promoter, which is preferentially expressed in the lamina joint and the spikelet of rice. Increased leaf angle and grain length with elongated cells in the lamina joint and the grain hull were observed in transgenic rice containing much greater gibberellin A3 (GA3) levels than WT, demonstrating that both OsBCL1 and OsBCL2 are positive regulators of cell elongation at least partially through increased GA biosynthesis. Moreover, the cell elongation was likely due to cell expansion rather than cell division based on the related gene expression and, the cell elongation-promoting activities of OsBCL1 and OsBCL2 were functional in a dicot species, Arabidopsis.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/anatomia & histologia , Fenótipo , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais
6.
Molecules ; 26(15)2021 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-34361637

RESUMO

Ganoderma lucidum extract is a potent traditional remedy for curing various ailments. Drying is the most important postharvest step during the processing of Ganoderma lucidum. The drying process mainly involves heat (36 h at 60 °C) and freeze-drying (36 h at -80 °C). We investigated the effects of different postharvest drying protocols on the metabolites profiling of Ganoderma lucidum using GC-MS, followed by an investigation of the anti-neuroinflammatory potential in LPS-treated BV2 microglial cells. A total of 109 primary metabolites were detected from heat and freeze-dried samples. Primary metabolite profiling showed higher levels of amino acids (17.4%) and monosaccharides (8.8%) in the heat-dried extracts, whereas high levels of organic acids (64.1%) were present in the freeze-dried samples. The enzymatic activity, such as ATP-citrate synthase, pyruvate kinase, glyceraldehyde-3-phosphatase dehydrogenase, glutamine synthase, fructose-bisphosphate aldolase, and D-3-phosphoglycerate dehydrogenase, related to the reverse tricarboxylic acid cycle were significantly high in the heat-dried samples. We also observed a decreased phosphorylation level of the MAP kinase (Erk1/2, p38, and JNK) and NF-κB subunit p65 in the heat-dried samples of the BV2 microglia cells. The current study suggests that heat drying improves the production of ganoderic acids by the upregulation of TCA-related pathways, which, in turn, gives a significant reduction in the inflammatory response of LPS-induced BV2 cells. This may be attributed to the inhibition of NF-κB and MAP kinase signaling pathways in cells treated with heat-dried extracts.


Assuntos
Anti-Inflamatórios , Antineoplásicos Fitogênicos , Neoplasias/tratamento farmacológico , Reishi/química , Metabolismo Secundário , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Dessecação , Camundongos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia
7.
Food Chem ; 335: 127645, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32738537

RESUMO

The dried Ganoderma lucidum (GL) has been widely used for its pharmacological properties and bioactive ganoderic acids (GAs). Herein, extraction procedures combining ultra-sonication and heating were optimized using response surface methodology based on four variables (antioxidant activity, anti-diabetic activity, total GAs content, and total polysaccharide content) and principal component analysis. The extraction of freeze-dried GL at temperatures between 64.2 and 70 °C for 1.2 h maximized the antioxidant activity and GA content, whereas the polysaccharide content and anti-diabetic activity were maximized by extraction between 66.8 and 70 °C for more than 2.8 h. Heat-dried GL extracted at 50 °C for 3 h provided the greatest anti-inflammatory activity against HaCaT cells by suppressing the response to inflammation related cytokines at mRNA levels. These results suggest that extraction conditions might be a limiting factor for target-oriented investigations, and optimized extraction methods may improve the potential effect and quality of harvested GL products.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , Fracionamento Químico/métodos , Hipoglicemiantes/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Reishi/química , Triterpenos/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Fracionamento Químico/instrumentação , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Triterpenos/química , Triterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...