Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 15766, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737299

RESUMO

Conventional cage and plate (CCP) implants usually used in ACDF surgery, do have limitations such as the development of postoperative dysphagia, adjacent segment degeneration, and soft tissue injury. To reduce the risk of these complications, zero-profile stand-alone cage were developed. We used finite-element modeling to compare the total von Mises stress applied to the bone, disc, endplate, cage and screw when using CCP and ZPSC implants. A 3-dimensional FE (Finite element) analysis was performed to investigate the effects of the CCP implant and ZPSC on the C3 ~ T1 vertebrae. We confirmed that the maximum von Mises stress applied with ZPSC implants was more than 2 times greater in the endplate than that applied with CCP implants. The 3D analysis of the ZPSC model von Mises stress measurements of screw shows areas of higher stress in red. Although using ZPSC implants in ACDF reduces CCP implant-related sequalae such as dysphagia, we have shown that greater von Mises stress is applied to the endplate, and screw when using ZPSC implants. This may explain the higher subsidence rate associated with ZPSC implant use in ACDF. When selecting an implant in ACDF, surgeons should consider patient characteristics and the advantages and disadvantages of each implant type.


Assuntos
Transtornos de Deglutição , Cirurgiões , Humanos , Discotomia , Placas Ósseas , Parafusos Ósseos
2.
Bioengineering (Basel) ; 10(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37760153

RESUMO

This study used the finite element method(FEM) to investigate how pressure on the lumbar spine changes during dynamic movements in different postures: standing, erect sitting on a chair, slumped sitting on a chair, and sitting on the floor. Three load modes (flexion, lateral bending, and axial rotation) were applied to the FEM, simulating movements of the lumbar spine. Results showed no significant difference in pressure distribution on the annulus fiber and nucleus pulposus, representing intradiscal pressure, as well as on the cortical bone during movements between standing and erect sitting postures. However, both slumped sitting on a chair and sitting on the floor postures significantly increased pressure on the nucleus pulposus, annulus fibrosus, and cortical bone in all three movements when compared to standing or erect sitting on a chair. Notably, sitting on the floor resulted in even higher pressure on the nucleus pulposus and annulus fibers compared to slumped sitting on a chair. The decreased lumbar lordosis while sitting on the floor led to the highest increase in pressure on the annulus fiber and nucleus pulposus in the lumbar spine. In conclusion, maintaining an erect sitting position with increased lumbar lordosis during seated activities can effectively reduce intradiscal pressure and cortical bone stress associated with degenerative disc diseases and spinal deformities.

3.
J Healthc Eng ; 2022: 7069448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330359

RESUMO

Intervertebral discs are fibrocartilage structures, which play a role in buffering the compression applied to the vertebral bodies evenly while permitting limited movements. According to several previous studies, degenerative changes in the intervertebral disc could be accelerated by factors, such as aging, the female sex, obesity, and smoking. As degenerative change progresses, the disc height could be reduced due to the dehydration of the nucleus pulposus. This study aimed to quantitatively analyze the pressure that each structure of the spine receives according to the change in the disc height and predict the physiological effect of disc height on the spine. We analyzed the biomechanical effect on spinal structures when the disc height was decreased using a finite-element method investigation of the lumbar spine. Using a 3D FE model, the degree and distribution of von-Mises stress according to the disc height change were measured by applying the load of four different motions to the lumbar spine. The height was changed by dividing the anterior and posterior parts of the disc, and analysis was performed in the following four motions: flexion, extension, lateral bending, and axial rotation. Except for a few circumstances, the stress applied to the structure generally increased as the disc height decreased. Such a phenomenon was more pronounced when the direction in which the force was concentrated coincided with the portion where the disc height decreased. This study demonstrated that the degree of stress applied to the spinal structure generally increases as the disc height decreases. The increase in stress was more prominent when the part where the disc height was decreased and the part where the moment was additionally applied coincided. Disc height reduction could accelerate degenerative changes in the spine. Therefore, eliminating the controllable risk factors that cause disc height reduction may be beneficial for spinal health.


Assuntos
Disco Intervertebral , Feminino , Humanos , Análise de Elementos Finitos , Fenômenos Biomecânicos , Disco Intervertebral/fisiologia , Vértebras Lombares/fisiologia , Região Lombossacral , Amplitude de Movimento Articular/fisiologia
4.
Sci Rep ; 12(1): 11001, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768481

RESUMO

This study aims to investigate the difference in physiological loading on the spine in three different motions (flexion-extension, lateral bending, and axial rotation) between osteoporotic and normal spines, using finite element modelling. A three-dimensional finite element (FE) model centered on the lumbar spine was constructed. We applied two different material properties of osteoporotic and normal spines. For the FE analysis, three loading conditions (flexion-extension, lateral bending, and axial rotation) were applied. The von Mises stress was higher on the nucleus pulposus at all vertebral levels in all movements, in the osteoporosis group than in the normal group. On the annulus fibrosus, the von Mises stress increased at the level of L3-L4, L4-L5, and L5-S in the flexion-extension group and at L4-L5 and L5-S levels in the lateral bending group. The values of two motions, flexion-extension and lateral bending, increased in the L4 and L5 cortical bones. In axial rotation, the von Mises stress increased at the level of L5 of cortical bone. Additionally, the von Mises stress increased in the lower endplate of L5-S and L4-L5 in all movements, especially lateral bending. Even in the group with no increase, there was a part that received increased von Mises stress locally for each element in the three-dimensional reconstructed view of the pressure distribution in color. The von Mises stress on the lumbar region in the three loading conditions, was greater in most components of osteoporotic vertebrae than in normal vertebrae and the value was highest in the nucleus pulposus. Considering the increase in the measured von Mises stress and the local increase in the pressure distribution, we believe that these results can contribute to explaining discogenic pain and degeneration.


Assuntos
Osteoporose , Fusão Vertebral , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/fisiologia , Região Lombossacral , Amplitude de Movimento Articular/fisiologia , Fusão Vertebral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...