Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 276, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168584

RESUMO

Sickle cell disease (SCD) affects millions worldwide, yet there are few therapeutic options. To develop effective treatments, preclinical models that recapitulate human physiology and SCD pathophysiology are needed. SCD arises from a single Glu-to-Val substitution at position 6 in the ß subunit of hemoglobin (Hb), promoting Hb polymerization and subsequent disease. Sheep share important physiological and developmental characteristics with humans, including the same developmental pattern of fetal to adult Hb switching. Herein, we investigated whether introducing the SCD mutation into the sheep ß-globin locus would recapitulate SCD's complex pathophysiology by generating high quality SWISS-MODEL sheep Hb structures and performing MD simulations of normal/sickle human (huHbA/huHbS) and sheep (shHbB/shHbS) Hb, establishing how accurately shHbS mimics huHbS behavior. shHbS, like huHbS, remained stable with low RMSD, while huHbA and shHbB had higher and fluctuating RMSD. shHbB and shHbS also behaved identically to huHbA and huHbS with respect to ß2-Glu6 and ß1-Asp73 (ß1-Asn72 in sheep) solvent interactions. These data demonstrate that introducing the single SCD-causing Glu-to-Val substitution into sheep ß-globin causes alterations consistent with the Hb polymerization that drives RBC sickling, supporting the development of a SCD sheep model to pave the way for alternative cures for this debilitating, globally impactful disease.


Assuntos
Anemia Falciforme , Hemoglobinas , Adulto , Humanos , Animais , Ovinos , Hemoglobinas/genética , Anemia Falciforme/terapia , Hemoglobina A , Globinas beta/genética , Modelos Animais , Hemoglobina Falciforme/genética , Hemoglobina Falciforme/química
2.
Biochemistry ; 62(20): 2908-2915, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37751522

RESUMO

Protein production by ribosomes is fundamental to life, and proper assembly of the ribosome is required for protein production. The RNA, which is post-transcriptionally modified, provides the platform for ribosome assembly. Thus, a complete understanding of ribosome assembly requires the determination of the RNA post-transcriptional modifications in all of the ribosome assembly intermediates and on each pathway. There are 26 RNA post-transcriptional modifications in 23S RNA of the mature Escherichia coli (E. coli) large ribosomal subunit. The levels of these modifications have been investigated extensively only for a small number of large subunit intermediates and under a limited number of cellular and environmental conditions. In this study, we determined the level of incorporations of 2-methyl adenosine, 3-methyl pseudouridine, 5-hydroxycytosine, and seven pseudouridines in an early-stage E. coli large-subunit assembly intermediate with a sedimentation coefficient of 27S. The 27S intermediate is one of three large subunit intermediates accumulated in E. coli cells lacking the DEAD-box RNA helicase DbpA and expressing the helicase inactive R331A DbpA construct. The majority of the investigated modifications are incorporated into the 27S large subunit intermediate to similar levels to those in the mature 50S large subunit, indicating that these early modifications or the enzymes that incorporate them play important roles in the initial events of large subunit ribosome assembly.

3.
J Phys Chem B ; 127(2): 438-445, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36602908

RESUMO

Trimethylamine N-oxide (TMAO) is an osmolyte that accumulates in cells in response to osmotic stress. TMAO stabilizes proteins by the entropic stabilization mechanism, which pictures TMAO as a nanocrowder that predominantly destabilizes the unfolded state. However, the mechanism of action of TMAO on RNA is much less understood. Here, we use all-atom molecular dynamics simulations to investigate how TMAO interacts with a 12-nt RNA hairpin with a high melting temperature, and an 8-nt RNA hairpin, which has a relatively fluid native basin in the absence of TMAO. The use of the two hairpins with different free energy of stabilization allows us to probe the origin of the destabilization effect of TMAO on RNA molecules without the possibility of forming tertiary interactions. We generated multiple trajectories using all-atom molecular dynamics (MD) simulations in explicit water by employing AMBER and CHARMM force fields, both in the absence and presence of TMAO. We observed qualitatively similar RNA-TMAO interaction profiles from the simulations using the two force fields. TMAO hydrogen bond interactions are largely depleted around the paired RNA bases and ribose sugars. In contrast, we show that the oxygen atom in TMAO, the hydrogen bond acceptor, preferentially interacts with the hydrogen bond donors in the solvent exposed bases, such as those in the stem-loop and the destabilized base stacks in the unfolded state, especially in the marginally stable 8-nt RNA hairpin. The predicted destabilization mechanism through TMAO-RNA hydrogen bond interactions could be tested using two-dimensional IR spectroscopy. Since TMAO does not significantly interact with the hydroxyl group of the ribose sugars, we predict that similar results must also hold for DNA.


Assuntos
RNA , Ribose , Ligação de Hidrogênio , RNA/química , Metilaminas/química , Água/química
4.
Biochemistry ; 61(10): 833-842, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35481783

RESUMO

23S ribosomal RNA (rRNA) of Escherichia coli 50S large ribosome subunit contains 26 post-transcriptionally modified nucleosides. Here, we determine the extent of modifications in the 35S and 45S large subunit intermediates, accumulating in cells expressing the helicase inactive DbpA protein, R331A, and the native 50S large subunit. The modifications we characterized are 3-methylpseudouridine, 2-methyladenine, 5-hydroxycytidine, and nine pseudouridines. These modifications were detected using 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate (CMCT) treatment followed by alkaline treatment. In addition, KMnO4 treatment of 23S rRNA was employed to detect 5-hydroxycytidine modification. CMCT and KMnO4 treatments produce chemical changes in modified nucleotides that cause reverse transcriptase misincorporations and deletions, which were detected employing next-generation sequencing. Our results show that the 2-methyladenine modification and seven uridines to pseudouridine isomerizations are present in both the 35S and 45S to similar extents as in the 50S. Hence, the enzymes that perform these modifications, namely, RluA, RluB, RluC, RluE, RluF, and RlmN, have already acted in the intermediates. Two uridines to pseudouridine isomerizations, the 3-methylpseudouridine and 5-hydroxycytidine modifications, are significantly less present in the 35S and 45S, as compared to the 50S. Therefore, the enzymes that incorporate these modifications, RluD, RlmH, and RlhA, are in the process of modifying the 35S and 45S or will incorporate these modifications during the later stages of ribosome assembly. Our study employs a novel high throughput and single nucleotide resolution technique for the detection of 2-methyladenine and two novel high throughput and single nucleotide resolution techniques for the detection of 5-hydroxycytidine.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , DNA Helicases/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Conformação de Ácido Nucleico , Nucleotídeos/metabolismo , Pseudouridina/química , Pseudouridina/metabolismo , RNA Ribossômico 23S/química
5.
J Phys Chem B ; 126(3): 609-619, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35026949

RESUMO

DNA G-quadruplexes in human telomeres and gene promoters are being extensively studied for their role in controlling the growth of cancer cells. G-quadruplexes have been unambiguously shown to exist both in vitro and in vivo, including in the guanine (G)-rich DNA genes encoding pre-ribosomal RNA (pre-rRNA), which is transcribed in the cell's nucleolus. Recent studies strongly suggest that these DNA sequences ("rDNA"), and the transcribed rRNA, are a potential anticancer target through the inhibition of RNA polymerase I (Pol I) in ribosome biogenesis, but the structures of ribosomal G-quadruplexes at atomic resolution are unknown and very little biophysical characterization has been performed on them to date. In the present study, circular dichroism (CD) spectroscopy is used to show that two putative rDNA G-quadruplex sequences, NUC 19P and NUC 23P and their counterpart rRNAs, predominantly adopt parallel topologies, reminiscent of the analogous telomeric quadruplex structures. Based on this information, we modeled parallel topology atomistic structures of the putative ribosomal G-quadruplexes. We then validated and refined the modeled ribosomal G-quadruplex structures using all-atom molecular dynamics (MD) simulations with the CHARMM36 force field in the presence and absence of stabilizing K+. Motivated by preliminary MD simulations of the telomeric parallel G-quadruplex (TEL 24P) in which the K+ ion is expelled, we used updated CHARMM36 force field K+ parameters that were optimized, targeting the data from quantum mechanical calculations and the polarizable Drude model force field. In subsequent MD simulations with optimized CHARMM36 parameters, the K+ ions are predominantly in the G-quadruplex channel and the rDNA G-quadruplexes have more well-defined, predominantly parallel-topology structures as compared to rRNA. In addition, NUC 19P is more structured than NUC 23P, which contains extended loops. Results from this study set the structural foundation for understanding G-quadruplex functions and the design of novel chemotherapeutics against these nucleolar targets and can be readily extended to other DNA and RNA G-quadruplexes.


Assuntos
Quadruplex G , DNA Ribossômico/genética , Humanos , Simulação de Dinâmica Molecular , RNA Ribossômico/genética , Telômero
6.
Acta Biomater ; 60: 264-274, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28754649

RESUMO

Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. STATEMENT OF SIGNIFICANCE: Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis.


Assuntos
Fibrina/química , Fibrinólise , Estresse Mecânico , Fibrina/metabolismo , Humanos
7.
Int J Mol Sci ; 16(7): 15872-902, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26184179

RESUMO

While tRNA and aminoacyl-tRNA synthetases are classes of biomolecules that have been extensively studied for decades, the finer details of how they carry out their fundamental biological functions in protein synthesis remain a challenge. Recent molecular dynamics (MD) simulations are verifying experimental observations and providing new insight that cannot be addressed from experiments alone. Throughout the review, we briefly discuss important historical events to provide a context for how far the field has progressed over the past few decades. We then review the background of tRNA molecules, aminoacyl-tRNA synthetases, and current state of the art MD simulation techniques for those who may be unfamiliar with any of those fields. Recent MD simulations of tRNA dynamics and folding and of aminoacyl-tRNA synthetase dynamics and mechanistic characterizations are discussed. We highlight the recent successes and discuss how important questions can be addressed using current MD simulations techniques. We also outline several natural next steps for computational studies of AARS:tRNA complexes.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Simulação de Dinâmica Molecular , RNA de Transferência/metabolismo , Regulação Alostérica , Aminoacil-tRNA Sintetases/química , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Teoria Quântica , RNA de Transferência/química
8.
J Phys Chem B ; 117(43): 13451-6, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24073791

RESUMO

With the advancement of nanotoxicology and nanomedicine, it has been realized that nanoparticles (NPs) interact readily with biomolecular species and other chemical and organic matter to result in biocorona formation. The field of the environmental health and safety of nanotechnology, or NanoEHS, is currently lacking significant molecular-resolution data, and we set out to characterize biocorona formation through electron microscopy imaging and circular dichroism spectroscopy that inspired a novel approach for molecular dynamics (MD) simulations of protein-NP interactions. In our present study, we developed a novel GPU-optimized coarse-grained MD simulation methodology for the study of biocorona formation, a first in the field. Specifically, we performed MD simulations of a spherical, negatively charged citrate-covered silver nanoparticle (AgNP) interacting with 15 apolipoproteins. At low ion concentrations, we observed the formation of an AgNP-apolipoprotein biocorona. Consistent with the circular dichroism (CD) spectra, we observed a decrease in α-helices coupled with an increase in ß-sheets in apolipoprotein upon biocorona formation.


Assuntos
Apolipoproteínas/química , Nanopartículas Metálicas/química , Prata/química , Apolipoproteínas/ultraestrutura , Dicroísmo Circular , Hidrodinâmica , Nanopartículas Metálicas/ultraestrutura , Modelos Moleculares , Simulação de Dinâmica Molecular , Tamanho da Partícula , Dobramento de Proteína , Propriedades de Superfície
9.
J Phys Chem B ; 117(42): 12943-52, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23841777

RESUMO

The folding of bacterial tRNAs with disparate sequences has been observed to proceed in distinct folding mechanisms despite their structural similarity. To explore the folding landscapes of tRNA, we performed ion concentration-dependent coarse-grained TIS model MD simulations of several E. coli tRNAs to compare their thermodynamic melting profiles to the classical absorbance spectra of Crothers and co-workers. To independently validate our findings, we also performed atomistic empirical force field MD simulations of tRNAs, and we compared the base-to-base distances from coarse-grained and atomistic MD simulations to empirical base-stacking free energies. We then projected the free energies to the secondary structural elements of tRNA, and we observe distinct, parallel folding mechanisms whose differences can be inferred on the basis of their sequence-dependent base-stacking stabilities. In some cases, a premature, nonproductive folding intermediate corresponding to the Ψ hairpin loop must backtrack to the unfolded state before proceeding to the folded state. This observation suggests a possible explanation for the fast and slow phases observed in tRNA folding kinetics.


Assuntos
RNA de Transferência/química , Sequência de Bases , Escherichia coli/metabolismo , Íons/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Transição de Fase , Dobramento de RNA , RNA de Transferência/metabolismo , Termodinâmica , Temperatura de Transição
10.
Nucleic Acids Res ; 40(16): 8011-20, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22641849

RESUMO

Folding mechanisms in which secondary structures are stabilized through the formation of tertiary interactions are well documented in protein folding but challenge the folding hierarchy normally assumed for RNA. However, it is increasingly clear that RNA could fold by a similar mechanism. P5abc, a small independently folding tertiary domain of the Tetrahymena thermophila group I ribozyme, is known to fold by a secondary structure rearrangement involving helix P5c. However, the extent of this rearrangement and the precise stage of folding that triggers it are unknown. We use experiments and simulations to show that the P5c helix switches to the native secondary structure late in the folding pathway and is directly coupled to the formation of tertiary interactions in the A-rich bulge. P5c mutations show that the switch in P5c is not rate-determining and suggest that non-native interactions in P5c aid folding rather than impede it. Our study illustrates that despite significant differences in the building blocks of proteins and RNA, there may be common ways in which they self-assemble.


Assuntos
RNA Catalítico/química , Magnésio/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Dobramento de RNA , Ribonuclease T1 , Tetrahymena/enzimologia
11.
J Am Chem Soc ; 133(50): 20634-43, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22082261

RESUMO

Globally RNA folding occurs in multiple stages involving chain compaction and subsequent rearrangement by a number of parallel routes to the folded state. However, the sequence-dependent details of the folding pathways and the link between collapse and folding are poorly understood. To obtain a comprehensive picture of the thermodynamics and folding kinetics we used molecular simulations of coarse-grained model of a pseudoknot found in the conserved core domain of the human telomerase (hTR) by varying both temperature (T) and ion concentration (C). The phase diagram in the [T,C] plane shows that the boundary separating the folded and unfolded state for the finite 47-nucleotide system is relatively sharp, implying that from a thermodynamic perspective hTR behaves as an apparent two-state system. However, the folding kinetics following single C-jump or T-quench is complicated, involving multiple channels to the native state. Although globally folding kinetics triggered by T-quench and C-jump are similar, the kinetics of chain compaction are vastly different, which reflects the role of initial conditions in directing folding and collapse. Remarkably, even after substantial reduction in the overall size of hTR, the ensemble of compact conformations are far from being nativelike, suggesting that the search for the folded state occurs among the ensemble of low-energy fluidlike globules. The rate of unfolding, which occurs in a single step, is faster upon C-decrease compared to a jump in temperature. To identify "hidden" states that are visited during the folding process we performed simulations by periodically interrupting the approach to the folded state by lowering C. These simulations show that hTR reaches the folded state through a small number of connected clusters that are repeatedly visited during the pulse sequence in which the folding or unfolding is interrupted. The results from interrupted folding simulations, which are in accord with non-equilibrium single-molecule folding of a large ribozyme, show that multiple probes are needed to reveal the invisible states that are sampled by RNA as it folds. Although we have illustrated the complexity of RNA folding using hTR as a case study, general arguments and qualitative comparisons to time-resolved scattering experiments on Azoarcus group I ribozyme and single-molecule non-equilibrium periodic ion-jump experiments establish the generality of our findings.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Telomerase/genética , Humanos , Cinética , Termodinâmica
12.
Structure ; 19(11): 1536-8, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22078551

RESUMO

Molecular explanations for the extraordinary elasticity and extensibility of fibrin fibers are still lacking. Now, Zhmurov et al. (2011) use force spectroscopy experiments, and innovative simulations that match the time and force scales of these experiments, to study fibrinogen behavior under an applied force providing deeper insights into this process.

13.
J Phys Chem B ; 115(45): 13401-7, 2011 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21985427

RESUMO

The osmolyte trimethylamine N-oxide (TMAO) accumulates in the cell in response to osmotic stress and increases the thermodynamic stability of folded proteins. To understand the mechanism of TMAO induced stabilization of folded protein states, we systematically investigated the action of TMAO on several model dipeptides (leucine, L(2), serine, S(2), glutamine, Q(2), lysine, K(2), and glycine, G(2)) in order to elucidate the effect of residue-specific TMAO interactions on small fragments of solvent-exposed conformations of the denatured states of proteins. We find that TMAO preferentially hydrogen bonds with the exposed dipeptide backbone but generally not with nonpolar or polar side chains. However, interactions with the positively charged Lys are substantially greater than with the backbone. The dipeptide G(2) is a useful model of the pure amide backbone; interacts with TMAO by forming a hydrogen bond between the amide nitrogen and the oxygen in TMAO. In contrast, TMAO is depleted from the protein backbone in the hexapeptide G(6), which shows that the length of the polypeptide chain is relevant in aqueous TMAO solutions. These simulations lead to the hypothesis that TMAO-induced stabilization of proteins and peptides is a consequence of depletion of the solute from the protein surface provided intramolecular interactions are more favorable than those between TMAO and the backbone. To test our hypothesis, we performed additional simulations of the action of TMAO on an intrinsically disordered Aß(16-22) (KLVFFAE) monomer. In the absence of TMAO, Aß(16-22) is a disordered random coil. However, in aqueous TMAO solution, Aß(16-22) monomer samples compact conformations. A transition from random coil to α-helical secondary structure is observed at high TMAO concentrations. The coil to α-helix transition is highly cooperative especially considering the small number of residues in Aß(16-22). Our work highlights the potential similarities between the action of TMAO on long polypeptide chains and entropic stabilization of proteins in a crowded environment due to excluded volume interactions. In this sense, the chemical chaperone TMAO is a nanocrowding particle.


Assuntos
Peptídeos beta-Amiloides/química , Dipeptídeos/química , Metilaminas/química , Fragmentos de Peptídeos/química , Ligação de Hidrogênio , Dobramento de Proteína , Termodinâmica
14.
Proc Natl Acad Sci U S A ; 106(41): 17349-54, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805055

RESUMO

Understanding how RNA molecules navigate their rugged folding landscapes holds the key to describing their roles in a variety of cellular functions. To dissect RNA folding at the molecular level, we performed simulations of three pseudoknots (MMTV and SRV-1 from viral genomes and the hTR pseudoknot from human telomerase) using coarse-grained models. The melting temperatures from the specific heat profiles are in good agreement with the available experimental data for MMTV and hTR. The equilibrium free energy profiles, which predict the structural transitions that occur at each melting temperature, are used to propose that the relative stabilities of the isolated helices control their folding mechanisms. Kinetic simulations, which corroborate the inferences drawn from the free energy profiles, show that MMTV folds by a hierarchical mechanism with parallel paths, i.e., formation of one of the helices nucleates the assembly of the rest of the structure. The SRV-1 pseudoknot, which folds in a highly cooperative manner, assembles in a single step in which the preformed helices coalesce nearly simultaneously to form the tertiary structure. Folding occurs by multiple pathways in the hTR pseudoknot, the isolated structural elements of which have similar stabilities. In one of the paths, tertiary interactions are established before the formation of the secondary structures. Our work shows that there are significant sequence-dependent variations in the folding landscapes of RNA molecules with similar fold. We also establish that assembly mechanisms can be predicted using the stabilities of the isolated secondary structures.


Assuntos
Conformação de Ácido Nucleico , RNA Viral/química , RNA/química , Linhagem Celular Tumoral , Simulação por Computador , Genoma Viral , Temperatura Alta , Humanos , Cinética , Vírus do Tumor Mamário do Camundongo/química , Vírus do Tumor Mamário do Camundongo/enzimologia , Vírus do Tumor Mamário do Camundongo/genética , Vírus dos Macacos de Mason-Pfizer/química , Vírus dos Macacos de Mason-Pfizer/enzimologia , Vírus dos Macacos de Mason-Pfizer/genética , Modelos Moleculares , Conformação Molecular , Desnaturação de Ácido Nucleico , RNA Viral/metabolismo , Telomerase/metabolismo , Termodinâmica
15.
Proc Natl Acad Sci U S A ; 106(2): 434-9, 2009 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19075236

RESUMO

Energy landscape theory requires that the protein-folding mechanism is generally globally directed or funneled toward the native state. The collective nature of transition state ensembles further suggests that sufficient averaging of the native interactions can occur so that the knowledge of the native topology may suffice for predicting the mechanism. Nevertheless, while simple homogeneously weighted native topology-based models predict the folding mechanisms for many proteins, for other proteins knowledge of the native topology, by itself, seems not to suffice in determining the folding mechanism. Simulations of proteins with differing topologies reveal that the failure of homogeneously weighted topology-based models can, however, be completely understood within the framework of a funneled energy landscape and can be quantified by comparing the fluctuation of entropy cost for forming contacts to the expected fluctuations in contact energy. To be precise, we find the transition state ensembles of proteins with all-alpha topologies, which are more uniform in the specific entropy cost of contact formation, have transition state ensembles that are more readily perturbed by differences in energetic weights than are the transition state ensembles of proteins with significant amounts of beta-structure, where the specific entropy costs of contact formation are more widely distributed. This behavior is consistent with a random-field Ising model analogy that follows from the free energy functional approach to folding.


Assuntos
Modelos Moleculares , Dobramento de Proteína , Termodinâmica , Simulação por Computador , Entropia , Cinética , Proteínas/química
16.
Chem Phys Lett ; 471(4-6): 310-314, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20161316

RESUMO

Single molecule experiments that can track individual trajectories of biomolecular processes provide a challenge for understanding how these stochastic trajectories relate to the global energy landscape. Using trajectories from a native structure based simulation, we use order parameters that accurately distinguish between protein folding mechanisms that involve a simple, single set of pathways versus a complex one with multiple sets of competing pathways. We show how the folding dynamics can be analyzed with replica correlation functions in a way compatible with single molecule experiments.

17.
Proc Natl Acad Sci U S A ; 105(1): 118-23, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18172203

RESUMO

In contrast to classical chemical phenomenology, theory suggests that proteins may undergo downhill folding without an activation barrier under certain thermodynamic conditions. Recently, the BBL protein was proposed to fold by such a downhill scenario, but discrepancies between experimental results found in different groups argue against this. After briefly reviewing the major experimental studies of the BBL folding mechanism, we show that simulations of both coarse-grained and atomistic models can reconcile the seemingly conflicting observations.


Assuntos
Aciltransferases/química , Bioquímica/métodos , Escherichia coli/metabolismo , Aciltransferases/metabolismo , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Modelos Teóricos , Conformação Molecular , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Eletricidade Estática , Temperatura , Termodinâmica
19.
J Mol Biol ; 365(4): 1201-16, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17174335

RESUMO

IkappaBalpha is the major regulator of transcription factor NF-kappaB function. The ankyrin repeat region of IkappaBalpha mediates specific interactions with NF-kappaB dimers, but ankyrin repeats 1, 5 and 6 display a highly dynamic character when not in complex with NF-kappaB. Using chemical denaturation, we show here that IkappaBalpha displays two folding transitions: a non-cooperative conversion under weak perturbation, and a major cooperative folding phase upon stronger insult. Taking advantage of a native Trp residue in ankyrin repeat (AR) 6 and engineered Trp residues in AR2, AR4 and AR5, we show that the cooperative transition involves AR2 and AR3, while the non-cooperative transition involves AR5 and AR6. The major structural transition can be affected by single amino acid substitutions converging to the "consensus" ankyrin repeat sequence, increasing the native state stability significantly. We further characterized the structural and dynamic properties of the native state ensemble of IkappaBalpha and the stabilized mutants by H/(2)H exchange mass spectrometry and NMR. The solution experiments were complemented with molecular dynamics simulations to elucidate the microscopic origins of the stabilizing effect of the consensus substitutions, which can be traced to the fast conformational dynamics of the folded ensemble.


Assuntos
Proteínas I-kappa B/química , Proteínas I-kappa B/metabolismo , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Anquirinas/química , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Conformação Molecular , Dados de Sequência Molecular , Inibidor de NF-kappaB alfa , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Fatores de Transcrição/química , Triptofano/química
20.
Proc Natl Acad Sci U S A ; 103(3): 586-91, 2006 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-16407126

RESUMO

Minding your p's and q's has become as important to protein-folding theorists as it is for those being instructed in the rules of etiquette. To assess the quality of structural reaction coordinates in predicting the transition-state ensemble (TSE) of protein folding, we benchmarked the accuracy of four structural reaction coordinates against the kinetic measure P(fold), whose value of 0.50 defines the stochastic separatrix for a two-state folding mechanism. For two proteins that fold by a simple two-state mechanism, c-src SH3 and CI-2, the Phi-values of the TSEs predicted by native topology-based reaction coordinates (including Q, the fraction of native contacts) are almost identical to those of the TSE based on P(fold), with correlation coefficients of >0.90. For proteins with complex folding mechanisms that have especially broad, asymmetrical free energy barriers such as the designed 3-ankyrin repeating protein (3ANK) or proteins with distinct intermediates such as cyanovirin-N (CV-N), we show that the ensemble of structures with P(fold) = 0.50 generally does not include the chemically relevant transition states. This weakness of P(fold) limits its usefulness in protein folding studies. For such systems, elucidating the essential features of folding mechanisms requires using multiple reaction coordinates, although the number is still rather small. At the same time, for simple folding mechanisms, there is no indication of superiority for P(fold) over structurally chosen and thermodynamically relevant reaction coordinates that correctly measure the degree of nativeness.


Assuntos
Modelos Químicos , Dobramento de Proteína , Proteína Tirosina Quinase CSK , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Termodinâmica , Domínios de Homologia de src , Quinases da Família src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...