Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(11): 18113-18124, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34734700

RESUMO

Charge doping to Mott insulators is critical to realize high-temperature superconductivity, quantum spin liquid state, and Majorana fermion, which would contribute to quantum computation. Mott insulators also have a great potential for optoelectronic applications; however, they showed insufficient photoresponse in previous reports. To enhance the photoresponse of Mott insulators, charge doping is a promising strategy since it leads to effective modification of electronic structure near the Fermi level. Intercalation, which is the ion insertion into the van der Waals gap of layered materials, is an effective charge-doping method without defect generation. Herein, we showed significant enhancement of optoelectronic properties of a layered Mott insulator, α-RuCl3, through electron doping by organic cation intercalation. The electron-doping results in substantial electronic structure change, leading to the bandgap shrinkage from 1.2 eV to 0.7 eV. Due to localized excessive electrons in RuCl3, distinct density of states is generated in the valence band, leading to the optical absorption change rather than metallic transition even in substantial doping concentration. The stable near-infrared photodetector using electronic modulated RuCl3 showed 50 times higher photoresponsivity and 3 times faster response time compared to those of pristine RuCl3, which contributes to overcoming the disadvantage of a Mott insulator as a promising optoelectronic device and expanding the material libraries.

2.
ACS Nano ; 14(12): 16266-16300, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33301290

RESUMO

Layered materials that do not form a covalent bond in a vertical direction can be prepared in a few atoms to one atom thickness without dangling bonds. This distinctive characteristic of limiting thickness around the sub-nanometer level allowed scientists to explore various physical phenomena in the quantum realm. In addition to the contribution to fundamental science, various applications were proposed. Representatively, they were suggested as a promising material for future electronics. This is because (i) the dangling-bond-free nature inhibits surface scattering, thus carrier mobility can be maintained at sub-nanometer range; (ii) the ultrathin nature allows the short-channel effect to be overcome. In order to establish fundamental discoveries and utilize them in practical applications, appropriate preparation methods are required. On the other hand, adjusting properties to fit the desired application properly is another critical issue. Hence, in this review, we first describe the preparation method of layered materials. Proper growth techniques for target applications and the growth of emerging materials at the beginning stage will be extensively discussed. In addition, we suggest interlayer engineering via intercalation as a method for the development of artificial crystal. Since infinite combinations of the host-intercalant combination are possible, it is expected to expand the material system from the current compound system. Finally, inevitable factors that layered materials must face to be used as electronic applications will be introduced with possible solutions. Emerging electronic devices realized by layered materials are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...