Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(1)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257805

RESUMO

Seoul (SEOV) and Hantaan (HTNV) orthohantaviruses are significant zoonotic pathogens responsible for hemorrhagic fever with renal syndrome. Here, we investigated the molecular evolution of SEOV and HTNV through phylogenetic and bioinformatic analyses using complete genome sequences of their large (L), medium (M), and small (S) gene segments. Despite similar epizootic cycles and clinical symptoms, SEOV and HTNV exhibited distinct genetic and evolutionary dynamics. The phylogenetic trees of each segment consistently showed major genetic clades associated with the geographical distribution of both viruses. Remarkably, SEOV M and S segments exhibit higher evolutionary rates, rapidly increasing genetic diversity, and a more recent origin in contrast to HTNV. Reassortment events were infrequent, but both viruses appear to utilize the M gene segment in genetic exchanges. SEOV favors the L or M segment reassortment, while HTNV prefers the M or S segment exchange. Purifying selection dominates in all three gene segments of both viruses, yet SEOV experiences an elevated positive selection in its glycoprotein Gc ectodomain. Key amino acid differences, including a positive 'lysine fence' (through residues K77, K82, K231, K307, and K310) located at the tip of the Gn, alongside the physical stability around an RGD-like motif through M108-F334 interaction, may contribute to the unique antigenic properties of SEOV. With the increasing global dispersion and potential implications of SEOV for the global public health landscape, this study highlights the unique evolutionary dynamics and antigenic properties of SEOV and HTNV in informing vaccine design and public health preparedness.


Assuntos
Orthohantavírus , Vírus de RNA , Filogenia , Seul , Evolução Molecular , Variação Genética
2.
Pharmaceutics ; 15(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896237

RESUMO

The successful application of mRNA therapeutics hinges on the effective intracellular delivery of mRNA both in vitro and in vivo. However, this remains a formidable challenge due to the polyanionic nature, longitudinal shape, and low nuclease resistance of mRNA. In this study, we introduce a novel mRNA delivery platform utilizing a human ß-defensin peptide, hBD23. The positive charge of hBD23 allows it to form nanocomplexes with mRNA, facilitating cellular uptake and providing protection against serum nucleases. When optimized for peptide-to-mRNA (N/P) ratios, these hBD23/mRNA complexes demonstrated efficient cellular delivery and subsequent protein expression both in vitro and in vivo. Importantly, as hBD23 is human derived, the complexes exhibited minimal cytotoxicity and immunogenicity. Given its high biocompatibility and delivery efficiency, hBD23 represents a promising platform for the in vitro and in vivo delivery of mRNA.

3.
Nano Lett ; 19(12): 8454-8460, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682446

RESUMO

Semiconductor nanowires are attractive building blocks of optoelectronics due to high efficiency and optical controllability. In particular, the mutual controllability of wavelength and polarization of light is essential for versatile applications such as displays, precise metrology, and bioimaging. We present quantum wire network emitters embedded in a single microrod capable of exhibiting orthogonally polarized dual-wavelength visible light at room temperature. The InGaN/GaN shell layers were grown on a single hexagonal GaN core microrod, spontaneously forming site-selective In-rich InGaN quantum wires on each edge between the nonpolar facets as well as each boundary between the nonpolar and semipolar facets. The orthogonally self-arranged, two sets of six quantum wires formed on the edges and the boundaries showed efficient violet and blue-green color emissions with strong linear polarization parallel and perpendicular to the c-axis at room temperature, respectively. This intriguing emission from a single microrod allows us to mutually manipulate the color and the polarization of light, which would be beneficial for photonic applications with unprecedented controllability and functionality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...