Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 11(12): 2926-2936, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567487

RESUMO

Recently, inverted perovskite solar cells (PeSCs) have witnessed significant advancements; however, their long-term stability remains a challenge because of the oxidation of silver cathodes to form AgI by mobile iodides. To overcome this problem, we propose the integration of an electron-deficient naphthalene diimide-based zwitterion (NDI-ZI) as the cathode interlayer. Compared to the physical ion-blocking layer, it effectively captures ions by forming ionic bonds via electrostatic Coulombic interaction to suppress the migration of iodide and Ag ions. The NDI-ZI interlayer also suppresses the shunt paths and modulates the work function of the Ag electrode by forming interface dipoles, thereby enhancing charge extraction. FA0.85Cs0.15PbI3 based PeSCs incorporating NDI-ZI exhibited a noticeably high power conversion efficiency of up to 23.3% and outstanding stability, maintaining ∼80% of their initial performance over 1500 h at 85 °C and over 500 h under continuous 1-sun illumination. This study highlights the potential of a zwitterionic cathode interlayer in diverse perovskite optoelectronic devices, leading to their improved efficiency and stability.

2.
Small ; : e2401080, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566553

RESUMO

Non-fullerene acceptors (NFAs) significantly enhance photovoltaic performance in organic solar cells (OSCs) using halogenated solvents and additives. However, these solvents are environmentally detrimental and unsuitable for industrial-scale production, and the issue of OSCs' poor long-term stability persists. This report introduces eight asymmetric NFAs (IPCnF-BBO-IC2F, IPCnF-BBO-IC2Cl, IPCnCl-BBO-IC2F, and IPCnCl-BBO-IC2Cl, where n = 1 and 2). These NFAs comprise a 12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno-[3,2-b]indole (BBO) core. One end of the core attaches to a mono- or di-halogenated 9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile (IPC) end group (IPC1F, IPC1Cl, IPC2F, or IPC2Cl), while the other end connects to a 2-(5,6-dihalo-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC) end group (IC2F or IC2Cl). The optical and electronic properties of these NFAs can be finely tuned by controlling the number of halogen atoms. Crucially, these NFAs demonstrate excellent compatibility with PM6 even in o-xylene, facilitating the production of additive-free OSCs. The di-halogenated IPC-based NFAs outperform their mono-halogenated counterparts in photovoltaic performance within OSCs. Remarkably, the di-halogenated IPC-based NFAs maintain 94‒98% of their initial PCEs over 2000 h in air without encapsulation, indicating superior long-term device stability. These findings imply that the integration of di-halogenated IPCs in asymmetric NFA design offers a promising route to efficient, stable OSCs manufactured through environmentally friendly processes.

3.
ACS Nano ; 18(4): 2992-3001, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227810

RESUMO

Phenyl-C61-butyric acid methyl ester (PCBM) can be used as a passivation material in perovskite solar cells (PeSCs) in order to reduce the trap site of the perovskite. Here, we show that a thick PCBM layer can form a smoother surface on the SnO2 substrate, improving the grain size and reducing the microstrain of the perovskite. High-temperature annealing treatment of PCBM layer not only increases its solvent resistance to perovskite precursor or antisolvent, but also enhances its molecular alignment, resulting in improved conductivity as an electron transport layer. High-temperature annealed PCBM (HT-PCBM) effectively minimizes trap-assisted nonradiative recombination by reducing trap density in perovskite and improving the electrical properties at the interface between SnO2 and perovskite layers. This HT-PCBM process significantly enhances the performance of the PeSCs, including the open-circuit voltage (VOC) from 0.39 to 0.77 V, fill factor from 52% to 65%, and power conversion efficiency (PCE) from 6.03% to 15.50%, representing substantial improvements compared to devices without PCBM. This PCE is the highest efficiency among conventional (n-i-p) Sn-Pb PeSCs reported to date. Moreover, passivating the trap sites of SnO2 and separating the interface between the Sn-containing perovskite and the substrate effectively have improved the stability of the Sn-Pb perovskite in the n-i-p structure. The optimized best device with HT-PCBM has maintained an efficiency of over 90% for more than 300 h at 85 °C and 5000 h at room temperature in a glovebox atmosphere.

4.
Adv Mater ; 36(4): e2307402, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37989225

RESUMO

For optimizing steady-state performance in organic electrochemical transistors (OECTs), both molecular design and structural alignment approaches must work in tandem to minimize energetic and microstructural disorders in polymeric mixed ionic-electronic conductor films. Herein, a series of poly(diketopyrrolopyrrole)s bearing various lengths of aliphatic-glycol hybrid side chains (PDPP-mEG; m = 2-5) is developed to achieve high-performance p-type OECTs. PDPP-4EG polymer with the optimized length of side chains exhibits excellent crystallinity owing to enhanced lamellar and backbone interactions. Furthermore, the improved structural ordering in PDPP-4EG films significantly decreases trap state density and energetic disorder. Consequently, PDPP-4EG-based OECT devices produce a mobility-volumetric capacitance product ([µC*]) of 702 F V-1 cm-1 s-1 and a hole mobility of 6.49 ± 0.60 cm2 V-1 s-1 . Finally, for achieving the optimal structural ordering along the OECT channel direction, a floating film transfer method is employed to reinforce the unidirectional orientation of polymer chains, leading to a substantially increased figure-of-merit [µC*] to over 800 F V-1 cm-1 s-1 . The research demonstrates the importance of side chain engineering of polymeric mixed ionic-electronic conductors in conjunction with their anisotropic microstructural optimization to maximize OECT characteristics.

5.
Small ; : e2307441, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054784

RESUMO

The electrode buffer layer is crucial for high-performance and stable OSCs, optimizing charge transport and energy level alignment at the interface between the polymer active layer and electrode. Recently, SnO2 has emerged as a promising material for the cathode buffer layer due to its desirable properties, such as high electron mobility, transparency, and stability. Typically, SnO2 nanoparticle layers require a postannealing treatment above 150°C in an air environment to remove the surfactant ligands and obtain high-quality thin films. However, this poses challenges for flexible electronics as flexible substrates can't tolerate temperatures exceeding 100°C. This study presents solution-processable and annealing-free SnO2 nanoparticles by employing y-ray irradiation to disrupt the bonding between surfactant ligands and SnO2 nanoparticles. The SnO2 layer treated with y-ray irradiation is used as an electron transport layer in OSCs based on PTB7-Th:IEICO-4F. Compared to the conventional SnO2 nanoparticles that required high-temperature annealing, the y-SnO2 nanoparticle-based devices exhibit an 11% comparable efficiency without postannealing at a high temperature. Additionally, y-ray treatment has been observed to eliminate the light-soaking effect of SnO2 . By eliminating the high-temperature postannealing and light-soaking effect, y-SnO2 nanoparticles offer a promising, cost-effective solution for future flexible solar cells fabricated using roll-to-roll mass processing.

6.
Polymers (Basel) ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896285

RESUMO

In conventional fullerene-based organic photovoltaics (OPVs), in which the excited electrons from the donor are transferred to the acceptor, the electron charge transfer state (eECT) that electrons pass through has a great influence on the device's performance. In a bulk-heterojunction (BHJ) system based on a low bandgap non-fullerene acceptor (NFA), however, a hole charge transfer state (hECT) from the acceptor to the donor has a greater influence on the device's performance. The accurate determination of hECT is essential for achieving further enhancement in the performance of non-fullerene organic solar cells. However, the discovery of a method to determine the exact hECT remains an open challenge. Here, we suggest a simple method to determine the exact hECT level via deconvolution of the EL spectrum of the BHJ blend (ELB). To generalize, we have applied our ELB deconvolution method to nine different BHJ systems consisting of the combination of three donor polymers (PM6, PBDTTPD-HT, PTB7-Th) and three NFAs (Y6, IDIC, IEICO-4F). Under the conditions that (i) absorption of the donor and acceptor are separated sufficiently, and (ii) the onset part of the external quantum efficiency (EQE) is formed solely by the contribution of the acceptor only, ELB can be deconvoluted into the contribution of the singlet recombination of the acceptor and the radiative recombination via hECT. Through the deconvolution of ELB, we have clearly decided which part of the broad ELB spectrum should be used to apply the Marcus theory. Accurate determination of hECT is expected to be of great help in fine-tuning the energy level of donor polymers and NFAs by understanding the charge transfer mechanism clearly.

7.
ACS Nano ; 17(14): 13510-13521, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37406362

RESUMO

Since facile routes to fabricate freestanding oxide membranes were previously established, tremendous efforts have been made to further improve their crystallinity, and fascinating physical properties have been also reported in heterointegrated freestanding membranes. Here, we demonstrate our synthetic recipe to manufacture highly crystalline perovskite SrRuO3 freestanding membranes using new infinite-layer perovskite SrCuO2 sacrificial layers. To accomplish this, SrRuO3/SrCuO2 bilayer thin films are epitaxially grown on SrTiO3 (001) substrates, and the topmost SrRuO3 layer is chemically exfoliated by etching the SrCuO2 template layer. The as-exfoliated SrRuO3 membranes are mechanically transferred to various nonoxide substrates for the subsequent BaTiO3 film growth. Finally, freestanding heteroepitaxial junctions of ferroelectric BaTiO3 and metallic SrRuO3 are realized, exhibiting robust ferroelectricity. Intriguingly, the enhancement of piezoelectric responses is identified in freestanding BaTiO3/SrRuO3 heterojunctions with mixed ferroelectric domain states. Our approaches will offer more opportunities to develop heteroepitaxial freestanding oxide membranes with high crystallinity and enhanced functionality.

8.
ACS Appl Mater Interfaces ; 15(27): 32783-32791, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37366002

RESUMO

A cost-effective and environmentally friendly approach is proposed for producing N- and S-codoped multicolor-emission carbon dots (N- and S-codoped MCDs) at a mild reaction temperature (150 °C) and relatively short time (3 h). In this process, adenine sulfate acts as a novel precursor and doping agent, effectively reacting with other reagents such as citric acid, para-aminosalicylic acid, and ortho-phenylenediamine, even during solvent-free pyrolysis. The distinctive structures of reagents lead to the increased amount of graphitic nitrogen and sulfur doping in the N- and S-codoped MCDs. Notably, the obtained N- and S-codoped MCDs exhibit considerable fluorescence intensities, and their emission color can be adjusted from blue to yellow. The observed tunable photoluminescence can be attributed to variations in the surface state and the amount of N and S contents. Furthermore, due to the favorable optical properties, good water solubility and biocompatibility, and low cytotoxicity, these N- and S-codoped MCDs, especially green carbon dots, are successfully applied as fluorescent probes for bioimaging. The affordable and environmentally friendly synthesis method employed to create N- and S-codoped MCDs, combined with their remarkable optical properties, offers a promising avenue for their use in various fields, particularly in biomedical applications.


Assuntos
Carbono , Pontos Quânticos , Carbono/química , Nitrogênio/química , Sulfatos , Pontos Quânticos/química , Enxofre/química
9.
ACS Appl Mater Interfaces ; 15(22): 27026-27033, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37220162

RESUMO

High thermal stability is crucial for the commercialization of organic solar cells (OSCs). The thermal stability of OSCs has been improved using the tailoring blend morphology of bulk heterojunctions (BHJs). Herein, we demonstrated thermally stable OSCs in a ternary blended system containing low-crystalline semiconducting polymers (asy-PNDI1FTVT and PTB7-Th) and a non-fullerene acceptor (Y6). The asymmetric n-type semiconducting polymer (asy-PNDI1FTVT) differed from general symmetric semiconducting polymers as it randomly substituted fluorine atoms at the donor moiety (TVT), resulting in significantly lower crystallinity. asy-PNDI1FTVT in PTB7-Th:Y6 exhibited a well-mixed morphology at the BHJ and efficiently facilitated the charge dissociation process with an enhanced fill factor and power conversion efficiency. Furthermore, the ternary system of PTB7-Th:Y6:asy-PNDI1FTVT suppressed phase separation with negligible burn-in loss and performance degradation under thermal stress. The experiments showed that our devices without encapsulation retained over 90% of their initial efficiencies after 100 h at 65 °C. These results show significant potential for the development of thermally stable OSCs with reasonable efficiency.

10.
Adv Mater ; 35(24): e2300230, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929364

RESUMO

High power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack-onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6-b-PDMS19k :L8-BO PSC exhibits a high PCE (18%) and 9-times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8-BO-based PSC. However, the PM6:L8-BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6-b-PDMS19k :L8-BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8-BO blend (PCE80% at 12% strain) and the PM6:L8-BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs.

11.
Adv Sci (Weinh) ; 10(3): e2205127, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36417576

RESUMO

Defect states at the surface and grain boundaries of perovskite films have been known to be major determinants impairing the optoelectrical properties of perovskite films and the stability of perovskite solar cells (PeSCs). Herein, an n-type conjugated small-molecule additive based on fused-unit dithienothiophen[3,2-b]-pyrrolobenzothiadiazole-core (JY16) is developed for efficient and stable PeSCs, where JY16 possesses the same backbone as the widely used Y6 but with long-linear n-hexadecyl side chains rather than branched side chains. Upon introducing JY16 into the perovskite films, the electron-donating functional groups of JY16 passivate defect states in perovskite films and increase the grain size of perovskite films through Lewis acid-base interactions. Compared to Y6, JY16 exhibits superior charge mobility owing to its molecular packing ability and prevents decomposition of perovskite films under moisture conditions owing to their hydrophobic characteristics, improving the charge extraction ability and moisture stability of PeSCs. Consequently, the PeSC with JY16 shows a high power conversion efficiency of 21.35%, which is higher than those of the PeSC with Y6 (20.12%) and without any additive (18.12%), and outstanding moisture stability under 25% relative humidity, without encapsulation. The proposed organic semiconducting additive will prove to be crucial for achieving highly efficient and moisture stable PeSCs.

12.
Small ; 19(10): e2206547, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541782

RESUMO

Two new Y6 derivatives of symmetrical YBO-2O and asymmetrical YBO-FO nonfullerene acceptors (NFAs) are prepared with a simplified synthetic procedure by incorporating octyl and fluorine substituents onto the terminal 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (INCN) moiety. By moving the alkyl substituents on the Y6 core to the terminal INCN moiety, the lowest unoccupied molecular orbital of the YBO NFAs increases without decreasing solubility, resulting in high open-circuit voltages of the devices. Molecular dynamics simulation shows that YBO-2O/-FO preferentially form core-core and terminal-terminal dimeric interactions, demonstrating their tighter packing structure and higher electron mobility than Y6, which is consistent with 2D grazing incidence X-ray scattering and space charge limited current measurements. In blend films, the hole transfer (HT) from YBO-2O/-FO to the polymer donor PM6 is studied in detail by transient absorption spectroscopy, demonstrating efficient HT from YBO-FO to PM6 with their suitable energy level alignment. Despite the simplified synthesis, YBO-FO demonstrates photovoltaic performance similar to that of Y6, exhibiting a power conversion efficiency of 15.01%. Overall, this design strategy not only simplifies the synthetic procedures but also adjusts the electrical properties by modifying the intermolecular packing and energy level alignment, suggesting a novel simplified molecular design of Y6 derivatives.

13.
ACS Appl Mater Interfaces ; 14(46): 52233-52243, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36355863

RESUMO

Nonfused-ring electron acceptors (NFREAs) have received increasing attention for use in organic solar cells (OSCs) because of their synthetic simplicity and tunable optical spectra. However, their fundamental molecular interactions and the mechanism by which they govern the property-function relations of OSCs remain elusive. Here, to investigate the effects of the structural symmetry of NFREAs, two acceptor-donor-acceptor'-donor-acceptor (A-D-A'-D-A)-type NFREAs, 2,2'-(((naphtho[1,2-c:5,6-c']bis[1,2,5]thiadiazole-5,10-diylbis(4,4-bis(2-butyloctyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-6,2-diyl))bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (NTz-4F) and 2,2'-(((benzo[c][1,2,5]thiadiazole-4,7-diylbis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-6,2-diyl))bis(methaneylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (BT-4F), are designed and synthesized. They have different A' cores: NTz-4F has a modified centrosymmetric NTz core, whereas BT-4F has a modified axisymmetric BT core. In pristine films, the NTz-4F, which has a centrosymmetric core, shows substantially enhanced intermolecular interaction and microstructural crystalline ordering compared with BT-4F, which has an axisymmetric core. Even in blends with poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8,-dione))] (PBDB-T), NTz-4F retains its highly crystalline structure, whereas BT-4F loses crystalline packing. These changes in NTz-4F result in increased electron transport and suppressed nonradiative voltage loss, resulting in a power conversion efficiency of 9.14% for PBDB-T:NTz-4F vs 7.18% for PBDB-T:BT-4F. This work demonstrates that centrosymmetric-structured cores are promising building blocks for high-performance NFREA-based OSCs.

14.
Science ; 375(6578): 302-306, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050659

RESUMO

Improvements to perovskite solar cells (PSCs) have focused on increasing their power conversion efficiency (PCE) and operational stability and maintaining high performance upon scale-up to module sizes. We report that replacing the commonly used mesoporous-titanium dioxide electron transport layer (ETL) with a thin layer of polyacrylic acid-stabilized tin(IV) oxide quantum dots (paa-QD-SnO2) on the compact-titanium dioxide enhanced light capture and largely suppressed nonradiative recombination at the ETL-perovskite interface. The use of paa-QD-SnO2 as electron-selective contact enabled PSCs (0.08 square centimeters) with a PCE of 25.7% (certified 25.4%) and high operational stability and facilitated the scale-up of the PSCs to larger areas. PCEs of 23.3, 21.7, and 20.6% were achieved for PSCs with active areas of 1, 20, and 64 square centimeters, respectively.

15.
Chem Sci ; 12(42): 14083-14097, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34760192

RESUMO

The concurrent enhancement of short-circuit current (J SC) and open-circuit voltage (V OC) is a key problem in the preparation of efficient organic solar cells (OSCs). In this paper, we report efficient and stable OSCs based on an asymmetric non-fullerene acceptor (NFA) IPC-BEH-IC2F. The NFA consists of a weak electron-donor core dithienothiophen[3,2-b]-pyrrolobenzothiadiazole (BEH) and two kinds of strong electron-acceptor (A) units [9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile (IPC) with a tricyclic fused system and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC2F)]. For comparison, the symmetric NFAs IPC-BEH-IPC and IC2F-BEH-IC2F were characterised. The kind of flanking A unit significantly affects the light absorption features and electronic structures of the NFAs. The asymmetric IPC-BEH-IC2F has the highest extinction coefficient among the three NFAs owing to its strong dipole moment and highly crystalline feature. Its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels lie between those of the IPC-BEH-IPC and IC2F-BEH-IC2F molecules. The IPC group also promotes molecular packing through the tricyclic π-conjugated system and achieves increased crystallinity compared to that of the IC2F group. Inverted-type photovoltaic devices based on p-type polymer:NFA blends with PBDB-T and PM6 polymers as p-type polymers were fabricated. Among all these devices, the PBDB-T:IPC-BEH-IC2F blend device displayed the best photovoltaic properties because the IPC unit provides balanced electronic and morphological characteristics. More importantly, the PBDB-T:IPC-BEH-IC2F-based device exhibited the best long-term stability owing to the strongly interacting IPC moiety and the densely packed PBDB-T:IPC-BEH-IC2F film. These results demonstrate that asymmetric structural modifications of NFAs are an effective way for simultaneously improving the photovoltaic performance and stability of OSCs.

16.
Small ; 17(31): e2101729, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165888

RESUMO

Nickel oxide (NiO) offers intrinsic p-type behavior and high thermal and chemical stability, making it promising as a hole transport layer (HTL) material in inverted organic solar cells. However, its use in this application has been rare because of a wettability problem caused by use of water as base solvent and high-temperature annealing requirements. In the present work, an annealing-free solution-processable method for NiO deposition is developed and applied in both conventional and inverted non-fullerene polymer solar cells. To overcome the wettability problem, the typical DI water solvent is replaced with a mixed solvent of DI water and isopropyl alcohol with a small amount of 2-butanol additive. This allows a NiO nanoparticle suspension (s-NiO) to be deposited on a hydrophobic active layer surface. An inverted non-fullerene solar cell based on a blend of p-type polymer PTB7-Th and non-fullerene acceptor IEICO-4F exhibits the high efficiency of 11.23% with an s-NiO HTL, comparable to the efficiency of an inverted solar cell with a MoOx HTL deposited by thermal evaporation. Conventionally structured devices including this s-NiO layer show efficiency comparable to that of a conventional device with a PEDOT:PSS HTL.

17.
ACS Appl Bio Mater ; 4(4): 3453-3461, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014429

RESUMO

Polypyrrole nanoparticles (PPy-NPs) with excellent near-infrared absorption are commonly used as photothermal therapy (PTT) agents; however, PTT using PPy-NPs has a limitation in that it is difficult to maximize their therapeutic effect because of the lack of specific targeting. In this study, to overcome the difficulty of targeting, folic acid functionalized carbon dots (FA-CDs) with bright green fluorescence properties were combined with carboxylated PPy-NPs via the EDC/NHS coupling reaction to yield a PTT imaging agent. The synthesized FA-CD/PPy-NPs with excellent photostability performed folate receptor (FR) positive HeLa cancer cell imaging by green fluorescence signals of FA-CDs and exhibited high cell viability (above 90%) even at 500 µg/mL. The viability of HeLa cells incubated with 200 µg/mL FA-CD/PPy-NPs was dramatically decreased to 25.02 ± 1.85% by NIR laser irradiation, through photothermal therapeutic effects of FA-CD/PPy-NPs with high photothermal conversion efficiency (η = 40.80 ± 1.54%). The cancer cell death by FA-CD/PPy-NPs was confirmed by fluorescence imaging of FA-CDs as well as live/dead cell staining assay (calcein-AM/PI). These results demonstrate that the FA-CD/PPy-NPs can be utilized as multifunctional theranostic agents for specific bioimaging and treatment of FR-positive cancer cells.


Assuntos
Materiais Biocompatíveis/farmacologia , Carbono/farmacologia , Ácido Fólico/farmacologia , Nanopartículas/química , Imagem Óptica , Polímeros/farmacologia , Pirróis/farmacologia , Pontos Quânticos/química , Materiais Biocompatíveis/química , Carbono/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ácido Fólico/química , Humanos , Teste de Materiais , Estrutura Molecular , Tamanho da Partícula , Terapia Fototérmica , Polímeros/química , Pirróis/química
18.
ACS Appl Mater Interfaces ; 12(50): 55945-55953, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270428

RESUMO

We investigate the photovoltaic characteristics of organic solar cells (OSCs) for two distinctly different nanostructures, by comparing the charge carrier dynamics for bilayer- and bulk-heterojunction OSCs. Most interestingly, both architectures exhibit fairly similar power conversion efficiencies (PCEs), reflecting a comparable critical domain size for charge generation and charge recombination. Although this is, at first hand, surprising, a detailed analysis points out the similarity between these two concepts. A bulk-heterojunction architecture arranges the charge generating domains in a 3D ensemble across the whole bulk, while bilayer architectures arrange the specific domains on top of each other, rather than sharp bilayers. Specifically, for the polymer PBDB-T-2F, we find that the enhanced charge generation in a bulk composite is partially compensated by reduced recombination in the bilayer architecture, when nonfullerene acceptors (NFAs) are used instead of a fullerene acceptor. Overall, we demonstrate that bilayer-heterojunction OSCs with NFAs can reach competitive PCEs compared to the corresponding bulk-heterojunction OSCs because of reduced nonradiative open-circuit voltage losses, and suppressed trap-assisted recombination, as a result of a vertically separated donor-to-acceptor nanostructure. In contrast, the bilayer-heterojunction OSCs with the fullerene acceptor exhibited poor photovoltaic characteristics compared to the corresponding bulk devices because of highly aggregated acceptor molecules on top of the polymer donor. Although free carrier generation is reduced in a in a bilayer-heterojunction, because of reduced donor/acceptor interfaces and a limited exciton diffusion length, more favorable transport pathways for unipolar charge collection can partially compensate the aforementioned disadvantages. We propose that the unique properties of NFAs may open a technical venue for the bilayer-heterojunction as a great and easy alternative to the bulk heterojunction.

19.
Adv Sci (Weinh) ; 7(21): 2002395, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33173748

RESUMO

A charge transport layer based on transition metal-oxides prepared by an anhydrous sol-gel method normally requires high-temperature annealing to achieve the desired quality. Although annealing is not a difficult process in the laboratory, it is definitely not a simple process in mass production, such as roll-to-roll, because of the inevitable long cooling step that follows. Therefore, the development of an annealing-free solution-processable metal-oxide is essential for the large-scale commercialization. In this work, a room-temperature processable annealing-free "aqueous" MoO x solution is developed and applied in non-fullerene PBDB-T-2F:Y6 solar cells. By adjusting the concentration of water in the sol-gel route, an annealing-free MoO x with excellent electrical properties is successfully developed. The PBDB-T-2F:Y6 solar cell with the general MoO x prepared by the anhydrous sol-gel method shows a low efficiency of 7.7% without annealing. If this anhydrous MoO x is annealed at 200 °C, the efficiency is recovered to 17.1%, which is a normal value typically observed in conventional structure PBDB-T-2F:Y6 solar cells. However, without any annealing process, the solar cell with aqueous MoO x exhibits comparable performance of 17.0%. In addition, the solar cell with annealing-free aqueous MoO x exhibits better performance and stability without high-temperature annealing compared to the solar cells with PEDOT:PSS.

20.
Adv Mater ; 32(30): e2002333, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32567159

RESUMO

A series of anionic conjugated polyelectrolytes (CPEs) is synthesized based on poly(fluorene-co-phenylene) by varying the side-chain ionic density from two to six per repeat units (MPS2-TMA, MPS4-TMA, and MPS6-TMA). The effect of MPS2, 4, 6-TMA as interlayers on top of a hole-extraction layer of poly(bis(4-phenyl)-2,4,6-trimethylphenylamine (PTAA) is investigated in inverted perovskite solar cells (PeSCs). Owing to the improved wettability of perovskites on hydrophobic PTAA with the CPEs, the PeSCs with CPE interlayers demonstrate a significantly enhanced device performance, with negligible device-to-device dependence relative to the reference PeSC without CPEs. By increasing the ionic density in the MPS-TMA interlayers, the wetting, interfacial defect passivation, and crystal growth of the perovskites are significantly improved without increasing the series resistance of the PeSCs. In particular, the open-circuit voltage increases from 1.06 V for the PeSC with MPS2-TMA to 1.11 V for the PeSC with MPS6-TMA. The trap densities of the PeSCs with MPS2,4,6-TMA are further analyzed using frequency-dependent capacitance measurements. Finally, a large-area (1 cm2 ) PeSC is successfully fabricated with MPS6-TMA, showing a power conversion efficiency of 18.38% with negligible hysteresis and a stable power output under light soaking for 60 s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...