Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 432: 128726, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35316633

RESUMO

In-situ chemical oxidation (ISCO) and permeable reactive barrier (PRB) have been used in field practices for contaminated groundwater remediation. In this lab-scale study, a novel system integrating ISCO and PRB using peroxydisulfate (PDS) as the oxidant and copper oxide (CuO) as the reactive barrier material was developed for the removal of 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The influences of chlorophenol concentration and flow rate on the system performance were first evaluated using synthetic solutions. The removal efficiencies of target chlorophenols were greater than 90% when sufficient PDS was supplied ([PDS]/[chlorophenol]>1). It was also found that the removal efficiencies decreased with the increasing chlorophenol concentrations (10-150 µM) and flow rates (1.8-14.4 mL/min). When three real groundwaters were employed, the removal efficiencies of 2,4-DCP and 2,4,6-TCP slightly reduced to 90% and 85%, respectively. For PCP, the removal efficiency dropped to 20% in two groundwaters with relatively high levels of alkalinity. The influences of pH and TOC were found to be insignificant for the range investigated (pH 6.5-8.7 and TOC = 0.4-1.5 mgC/L). The reduced removal efficiency could be due to the formation of weaker radicals and the stronger competition between bicarbonate ions and PDS for the activation sites on the CuO surfaces.


Assuntos
Clorofenóis , Poluentes Químicos da Água , Cobre , Oxirredução , Óxidos
2.
J Environ Manage ; 302(Pt B): 114110, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34794051

RESUMO

Spent refractory brick (SRB) generated from the steel industry has a high magnesium content. In this study, a procedure was developed to utilize SRB gravels for efficient recovery of phosphate and ammonia from high strength wastewater via struvite (MgNH4PO4∙6H2O(s)) precipitation. Mg2+ and Ca2+ were first leached from SRB gravels using nitric acid solution. Ca2+ in the solution could inhibit struvite precipitation and was sequestered by dosing SO32- to form calcium sulfite (CaSO3(s)). The resulting Mg2+-rich solution was then employed to initiate struvite precipitation for phosphate and ammonia recovery. The optimal precipitation was achieved with a molar ratio of [Mg2+]:[NH3-N]:[PO43-P] = 2:1:2 at pH 9.5. The residual phosphate in the solution can be further removed via the precipitation of calcium phosphate minerals. Overall, 99.6% phosphate and 98.2% ammonia could be recovered and the treated wastewater could meet the discharging standards of ammonia and phosphate. The resulting solids, including calcium sulfite, struvite and calcium phosphate can be potentially used in the cement industry and agriculture sector to achieve sustainable recycle of spent materials.


Assuntos
Fosfatos , Águas Residuárias , Amônia , Precipitação Química , Aço , Estruvita , Eliminação de Resíduos Líquidos
3.
Chemosphere ; 283: 131282, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34467952

RESUMO

Carbon materials have been used to activate peroxydisulfate (PDS) for the degradation of organic pollutants. The mechanism involved, especially whether radicals are formed in these processes, is still under debate. In this research, multi-walled carbon nanotube (MWCNT) was employed to activate PDS for the removal of 2,4-dichlorophenol (2,4-DCP). The effects of solution pH, PDS concentration, 2,4-DCP concentration, and MWCNT loading on the degradation of 2,4-DCP were investigated. The mechanism was explored via radical scavenging experiments, electron paramagnetic resonance (EPR) and MWCNT surface characterization. The results showed that the rate of 2,4-DCP degradation increased with the increasing solution pH, PDS concentration and MWCNT loading. The presence of OH and SO4- signals in EPR studies, no inhibitory effect in radical scavenging experiments, and the chlorination of MWCNT observed by X-ray photoelectron spectroscopy (XPS) suggested that surface reactions involving both surface-bound radicals and direct electron transfer were responsible for 2,4-DCP degradation. Reusability tests showed that the surface sites responsible for surface-bound radical formation were poisoned after PDS activation, while those responsible for direct electron transfer remained active after five cycles. This research provided the first in-depth insights for the dual roles of MWCNT in the PDS activation process.


Assuntos
Clorofenóis , Nanotubos de Carbono , Elétrons , Oxirredução
4.
Sci Total Environ ; 699: 134379, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31522041

RESUMO

Peroxydisulfate (PDS, S2O82-) is a promising oxidant for water treatment and contaminated groundwater remediation. It requires activation to generate sulfate radical (SO4-) and hydroxyl radical (OH) for indirect oxidation of organic pollutants. Recently, efforts were devoted to developing PDS activation systems for direct oxidation of organic pollutants without producing radicals. However, the mechanism was still ambiguous and the kinetics was either not quantified or empirical in nature. In this research, we examined the activation of PDS by CuO for the degradation of 2,4-dichlorophenol (2,4-DCP). Dual-compound control experiments, radical scavenging tests and electron paramagnetic resonance (EPR) studies showed that surface-bound OH generated from the adsorbed PDS was the main reactive species responsible for the degradation of 2,4-DCP. A kinetic model considering the important reaction steps, including the adsorption of PDS onto CuO, activation of adsorbed PDS to form surface-bound SO4- and then surface-bound OH, and degradation of 2,4-DCP by surface-bound OH, was developed to better elucidate the reaction kinetics. The results suggested that the overall reaction kinetics of 2,4-DCP degradation was regulated by the adsorption of PDS onto CuO and the electron transfer between surface Cu and adsorbed PDS to form surface-bound SO4-. The developed kinetic model could serve as a framework to characterize other persulfate oxidation systems relying on surface-bound radicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...