Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833595

RESUMO

Soybean is an important agricultural crop known for its high protein and oil content, contributing to essential nutritional and health benefits for humans. Domesticated in China over 5000 years ago, soybean has since adapted to diverse environments and spread worldwide. This study aimed to investigate the genomic characteristics and population structures of 2,317 publicly available soybean whole-genome sequences from diverse geographical regions, including China, Korea, Japan, Europe, North America and South America. We used large-scale whole-genome sequencing data to perform high-resolution analyses to reveal the genetic characteristics of soybean accessions. Soybean accessions from China and Korea exhibited landrace characteristics, indicating higher genetic diversity and adaptation to local environments. On the other hand, soybean accessions from Japan, the European Union, and South America were found to have low genetic diversity due to artificial selection and breeding for agronomic traits. We also identified key variants and genes associated with the ability to adapt to different environments. In Korean soybean accessions, we observed strong selection signals for isoflavone synthesis, an adaptive trait critical for improving soybean adaptability, survival, and reproductive success by mitigating environmental stress. Identifying specific genomic regions showing unique patterns of selective sweeps for genes such as HIDH, CYP73A11, IFS1, and CYP81E11 associated with isoflavone synthesis provided valuable insights into potential adaptation mechanisms. Our research has significantly improved our understanding of soybean diversity at the genetic level. We have identified key genetic variants and genes influencing adaptability, laying the foundation for future advances in genomics-based breeding programs and crop improvement efforts.

2.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686144

RESUMO

Protein model refinement a the crucial step in improving the quality of a predicted protein model. This study presents an NMR refinement protocol called TrioSA (torsion-angle and implicit-solvation-optimized simulated annealing) that improves the accuracy of backbone/side-chain conformations and the overall structural quality of proteins. TrioSA was applied to a subset of 3752 solution NMR protein structures accompanied by experimental NMR data: distance and dihedral angle restraints. We compared the initial NMR structures with the TrioSA-refined structures and found significant improvements in structural quality. In particular, we observed a reduction in both the maximum and number of NOE (nuclear Overhauser effect) violations, indicating better agreement with experimental NMR data. TrioSA improved geometric validation metrics of NMR protein structure, including backbone accuracy and the secondary structure ratio. We evaluated the contribution of each refinement element and found that the torsional angle potential played a significant role in improving the geometric validation metrics. In addition, we investigated protein-ligand docking to determine if TrioSA can improve biological outcomes. TrioSA structures exhibited better binding prediction compared to the initial NMR structures. This study suggests that further development and research in computational refinement methods could improve biomolecular NMR structural determination.


Assuntos
Benchmarking , Imageamento por Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular
3.
Genomics ; 114(2): 110298, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134497

RESUMO

Yeonsan Ogye (OGYE; Gallus gallus domesticus) is a rare indigenous chicken breed that inhabits the Korean Peninsula. This breed has completely black coloring, including plumage, skin, eyes, beak, and internal organs. Despite these unique morphological characteristics, the population of OGYE has declined without in-depth research into their genome research. Therefore, this study aimed to compare the whole genome of OGYE to 12 other chicken populations, including ancestral breed, commercial breeds, Chinese indigenous breeds, and Korean native chickens. We focused on revealing the selection signature of OGYE, which has occurred through environmental pressures in the Korean Peninsula. Genome-wide selection analysis has identified local adaptation traits, such as egg development, that contribute to fetal viability and innate immune response to prevent viral and microbes infection in OGYE. In particular, SPP1 (Secreted Phosphoprotein 1), HSP90AA1 (Heat Shock Protein 90 Alpha Family Class A Member 1), and P2RX4 (Purinergic Receptor P2X 4) could have considerable involvement in egg development and RNASEL (Ribonuclease L), BRIP1 (BRCA1 Interacting Protein C-terminal Helicase 1), and TLR4 (Toll-Like Receptor 4) are crucial for the determination of the innate immune response. This study revealed the unique genetic diversity of OGYE at the genome-wide level. Furthermore, we emphasized the sustainable management of genetic resources and formulated breeding strategies for livestock on the Korean Peninsula.


Assuntos
Galinhas , Genômica , Animais , Galinhas/genética , Galinhas/metabolismo , Genoma , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...