Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 3): 127823, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949285

RESUMO

In this study, a microporous separator was produced using cellulose acetate (CA), which demonstrates heightened thermal stability in comparison to existing materials like polypropylene (PP) or polyethylene (PE). Furthermore, a pliable component was integrated into the CA membrane using glycerin as the plasticizing agent. Subsequently, gas pressure was exerted onto these areas to induce the formation of nano-sized pores. Examination through Scanning Electron Microscopy (SEM) unveiled the presence of abundant pores in the glycerin-plasticized areas. This substantiates that the pores generated under gas pressure were not only more uniform but also smaller than those created under water pressure. The interaction between CA and glycerin was validated using Fourier-Transform Infrared Spectroscopy (FT-IR), offering confirmation that a portion of the glycerin was extracted following the application of gas pressure. Additionally, the application of Thermogravimetric Analysis (TGA) allowed for an assessment of the thermal stability of the CA membrane, along with a verification of glycerin's removal post gas pressure treatment. The findings indicated that the incorporation of glycerin diminished the thermal stability of the CA membrane due to the plasticization effect. Furthermore, it was observed that a minor quantity of glycerin still persisted after the gas pressure treatment. Following the analysis of gas permeation, the porosity of the CA membrane was quantified at 78.8 %, exhibiting an average pore size measuring 224 nm.


Assuntos
Celulose , Glicerol , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Varredura , Porosidade , Celulose/química
2.
J Anim Sci Technol ; 65(3): 611-626, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37332280

RESUMO

Escherichia coli (E. coli) and Salmonella enterica (SE) infections in pigs are major source associated with enteric disease such as post weaning diarrhea. The aim of this study was to investigate the effects of Pediococcus pentosaceus in weaned piglets challenged with pathogen bacteria. In Experiment.1 90 weaned piglets with initial body weights of 8.53 ± 0.34 kg were assigned to 15 treatments for 2 weeks. The experiments were conducted two trials in a 2 × 5 factorial arrangement of treatments consisting of two levels of challenge (challenge and non-challenge) with E. coli and SE, respectively and five levels of probiotics (Control, Lactobacillus plantarum [LA], Pediococcus pentosaceus SMFM2016-WK1 [38W], Pediococcus acidilactici K [PK], Lactobacillus reuteri PF30 [PF30]). In Experiment.2 a total of 30 weaned pigs (initial body weight of 9.84 ± 0.85 kg) were used in 4 weeks experiment. Pigs were allocated to 5 groups in a randomized complete way with 2 pens per group and 3 pigs per pen. Supplementation of LA and 38W improved (p < 0.05) growth performance, intestinal pathogen bacteria count, fecal noxious odor and diarrhea incidence. In conclusion, supplementation of 38W strains isolated from white kimchi can act as probiotics by inhibiting E. coli and SE.

3.
Materials (Basel) ; 16(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37297150

RESUMO

The demand for fast-charging lithium-ion batteries (LIBs) with long cycle life is growing rapidly due to the increasing use of electric vehicles (EVs) and energy storage systems (ESSs). Meeting this demand requires the development of advanced anode materials with improved rate capabilities and cycling stability. Graphite is a widely used anode material for LIBs due to its stable cycling performance and high reversibility. However, the sluggish kinetics and lithium plating on the graphite anode during high-rate charging conditions hinder the development of fast-charging LIBs. In this work, we report on a facile hydrothermal method to achieve three-dimensional (3D) flower-like MoS2 nanosheets grown on the surface of graphite as anode materials with high capacity and high power for LIBs. The composite of artificial graphite decorated with varying amounts of MoS2 nanosheets, denoted as MoS2@AG composites, deliver excellent rate performance and cycling stability. The 20-MoS2@AG composite exhibits high reversible cycle stability (~463 mAh g-1 at 200 mA g-1 after 100 cycles), excellent rate capability, and a stable cycle life at the high current density of 1200 mA g-1 over 300 cycles. We demonstrate that the MoS2-nanosheets-decorated graphite composites synthesized via a simple method have significant potential for the development of fast-charging LIBs with improved rate capabilities and interfacial kinetics.

4.
Environ Sci Technol ; 57(23): 8808-8817, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37230994

RESUMO

Flow-electrode capacitive deionization (FCDI) offers infinite ion adsorption for continuous desalination of high-concentration saline water by supplying a flow-electrode to the cell. Although extensive efforts have been made to maximize the desalination rate and efficiency of FCDI cells, the electrochemical properties of these cells are not fully understood. This study investigated the factors affecting the electrochemical properties of FCDI cells containing activated carbon (AC; 1-20 wt %) and various flow rates (6-24 mL/min) for the flow-electrode using electrochemical impedance spectroscopy before and after desalination. Examination of the impedance spectra using the distribution of relaxation time and equivalent circuit fitting analysis revealed three distinctive resistances such as internal, charge transfer, and ion adsorption resistances. The overall impedance decreased significantly after the desalination experiment due to increased ion concentrations in the flow-electrode. The three resistances decreased with increasing concentrations of AC in the flow-electrode due to the extension of electrically connected AC particles that participated in the electrochemical desalination reaction. The ion adsorption resistance decreased significantly due to the flow rate dependence of the impedance spectra. In contrast, the internal and charge transfer resistances were invariant.


Assuntos
Cloreto de Sódio , Purificação da Água , Espectroscopia Dielétrica , Purificação da Água/métodos , Eletricidade , Eletrodos , Adsorção
5.
Membranes (Basel) ; 12(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36005680

RESUMO

In this study, a polymer separator with enhanced thermal stability is prepared to solve the problem of thermal durability of lithium-ion battery separators. This separator is manufactured by coating a solution of acetyl cellulose and glycerin on polypropylene. The added glycerin reacts with the acetyl cellulose chains, helping the chains become flexible, and promotes the formation of many pores in the acetyl cellulose. To improve the thermal stability of the separator, a mixed solution of acetyl cellulose and glycerin was coated twice on the PP membrane film. Water pressure is applied using a water treatment equipment to partially connect the pores of a small size in each layer and for the interaction between the PP and acetyl cellulose. SEM is used to observe the shape, size, and quantity of pores. TGA and FT-IR are used to observe the interactions. Average water flux data of the separators is 1.42 LMH and the decomposition temperature increases by about 60 °C compared to the neat acetyl cellulose. It is confirmed that there is an interaction with PP between the functional groups of acetyl cellulose.

6.
Molecules ; 27(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35807368

RESUMO

In this study, to use a stabilized carrier, silver nanoparticles (AgNPs) were used as carriers and electron acceptors were added to activate the surface of AgNPs as olefin carriers. In addition, poly(ether-block-amide) (PEBAX), consisting of polyamide (hard segments) and polyether (soft segments), was investigated for the correlation of the between-segments ratio related to the stability of AgNPs and separation performance. As a result, contrary to the expectation that high permeance would be observed in PEBAX-1657/AgNPs/7,7,8,8-tetracyanoquinodimethane (TCNQ) membrane, which had a higher ratio of polyether soft segment, the PEBAX-5513/AgNPs/TCNQ membrane, which had a relatively high proportion of polyamide, showed a higher permeance without difference in selectivity. These unexpected data were attributable to the fact that the relatively abundant amount of PA groups in PEBAX-5513 was able to stabilize and positively polarize the surface of AgNPs, resulting in the stabilized and high performance of olefin separation.

7.
Nanomaterials (Basel) ; 12(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335733

RESUMO

Recently, lead halide perovskite nanocrystals have been considered as potential light-emitting materials because of their narrow full width at half-maximum (FWHM) and high photoluminescence quantum yield (PLQY). In addition, they have various emission spectra because the bandgap can be easily tuned by changing the size of the nanocrystals and their chemical composition. However, these perovskite materials have poor long-term stability due to their sensitivity to moisture. Thus far, various approaches have been attempted to enhance the stability of the perovskite nanocrystals. However, the required level of stability in the mass production process of perovskite nanocrystals under ambient conditions has not been secured. In this work, we developed a facile two-step ball-milling and ethanol/water-induced phase transition method to synthesize stable CsPbBr3 perovskite materials. We obtained pure CsPbBr3 perovskite solutions with stability retention of 86% for 30 days under ambient conditions. Our materials show a high PLQY of 35% in solid films, and excellent thermal stability up to 80 °C. We believe that our new synthetic method could be applicable for the mass production of light-emitting perovskite materials.

8.
Nanomaterials (Basel) ; 11(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34835791

RESUMO

To effectively improve the energy density and reduce the self-discharging rate of micro-supercapacitors, an advanced strategy is required. In this study, we developed a hydroquinone (HQ)-based polymer-gel electrolyte (HQ-gel) for micro-supercapacitors. The introduced HQ redox mediators (HQ-RMs) in the gel electrolyte composites underwent additional Faradaic redox reactions and synergistically increased the overall energy density of the micro-supercapacitors. Moreover, the HQ-RMs in the gel electrolyte weakened the self-discharging behavior by providing a strong binding attachment of charged ions on the porous graphitized carbon electrodes after the redox reactions. The micro-supercapacitors with HQ gel (HQ-MSCs) showed excellent energy storage performance, including a high energy volumetric capacitance of 255 mF cm-3 at a current of 1 µA, which is 2.7 times higher than the micro-supercapacitors based on bare-gel electrolyte composites without HQ-RMs (b-MSCs). The HQ-MSCs showed comparatively low self-discharging behavior with an open circuit potential drop of 37% compared to the b-MSCs with an open circuit potential drop of 60% after 2000 s. The assembled HQ-MSCs exhibited high mechanical flexibility over the applied external tensile and compressive strains. Additionally, the HQ-MSCs show the adequate circuit compatibility within series and parallel connections and the good cycling performance of capacitance retention of 95% after 3000 cycles.

9.
Membranes (Basel) ; 11(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34832110

RESUMO

In this study, a porous membrane with a cellulose acetate (CA) matrix was fabricated using propylene glycol with a water pressure treatment without a metal salt as an additive. The water pressure treatment of the fabricated CA membrane with propylene glycol yielded nanopores. The nanopores were formed as the additives in the CA chains led to plasticization. The weakened chains of the parts where the plasticization occurred were broken by the water pressure, which generated the pores. Compared to the previous study with glycerin as an additive, the size of the hydration region was controlled by the number of hydrophilic functional groups. When water pressure was applied to the CA membrane containing propylene glycol as an additive, the hydration area was small, so it was effective to control the pore size and the number of nano pores than glycerin. In addition, the number of nanopores and pore size could be easily adjusted by the water pressure. The porosity of the membrane was increased owing to the trace amount of propylene glycol, confirmed by scanning electron microscopy (SEM) and porosimetry. The interaction between the CA and propylene glycol was verified by Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). Consequently, it was the optimum composition to generate pores at the CA/propylene glycol 1:0.2 ratio, and porosity of 69.7% and average pore diameter of 300 nm was confirmed. Since it is a membrane with high porosity and nano sized pores, it is expected to be applied in various fields.

10.
Materials (Basel) ; 14(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443205

RESUMO

Graphite is used as a state-of-the-art anode in commercial lithium-ion batteries (LIBs) due to its highly reversible lithium-ion storage capability and low electrode potential. However, graphite anodes exhibit sluggish diffusion kinetics for lithium-ion intercalation/deintercalation, thus limiting the rate capability of commercial LIBs. In order to determine the lithium-ion diffusion coefficient of commercial graphite anodes, we employed a galvanostatic intermittent titration technique (GITT) to quantify the quasi-equilibrium open circuit potential and diffusion coefficient as a function of lithium-ion concentration and potential for a commercial graphite electrode. Three plateaus are observed in the quasi-equilibrium open circuit potential curves, which are indicative of a mixed phase upon lithium-ion intercalation/deintercalation. The obtained diffusion coefficients tend to increase with increasing lithium concentration and exhibit an insignificant difference between charge and discharge conditions. This study reveals that the diffusion coefficient of graphite obtained with the GITT (1 × 10-11 cm2/s to 4 × 10-10 cm2/s) is in reasonable agreement with literature values obtained from electrochemical impedance spectroscopy. The GITT is comparatively simple and direct and therefore enables systematic measurements of ion intercalation/deintercalation diffusion coefficients for secondary ion battery materials.

11.
ACS Appl Mater Interfaces ; 13(24): 28036-28048, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34114452

RESUMO

Sulfur is a prospective material for next-generation batteries with high theoretical capacity, but its drawbacks hinder its commercialization. To overcome the low conductivity of natural sulfur and the shuttle effect of lithium polysulfide, the study proposes a novel sulfur film coated with three-dimensional nitrogen and cobalt-codoped polyhedral carbon wrapped on a multiwalled carbon nanotube sponge (3D-S@NCoCPC sponge) composite as a high-performance cathode material for rechargeable lithium-sulfur batteries. The interconnected conductive carbon network with abundant pores provides more room for the homogeneous distribution of sulfur within the composite and creates a favorable pathway for electrolyte permeability and lithium-ion diffusion. Moreover, the strong interaction between cobalt and lithium polysulfides leads to efficient suppression of the shuttle effect. In addition, the homogeneous distribution of sulfur and cobalt within the composite enhances electronic transfer for the conversion reaction of sulfur. As expected, the cathode with a high sulfur content of 77.5 wt % in the composite achieved a high initial discharge capacity of 1192 mA h g-1 and high Coulombic efficiency of 99.98% after 100 cycles at 100 mA g-1 current density. Stable performance was achieved with 92.9% capacity retention after 200 cycles at 1000 mA/g current density.

12.
Membranes (Basel) ; 10(11)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114757

RESUMO

Perfluorinated polymers are widely used in polymer electrolyte membranes because of their excellent ion conductivity, which are attributed to the well-defined morphologies resulting from their extremely hydrophobic main-chains and flexible hydrophilic side-chains. Perfluorinated polymers containing quaternary ammonium groups were prepared from Nafion- and Aquivion-based sulfonyl fluoride precursors by the Menshutkin reaction to give anion exchange membranes. Perfluorinated polymers tend to exhibit poor solubility in organic solvents; however, clear polymer dispersions and transparent membranes were successfully prepared using N-methyl-2-pyrrolidone at high temperatures and pressures. Both perfluorinated polymer-based membranes exhibited distinct hydrophilic-hydrophobic phase-separated morphologies, resulting in high ion conductivity despite their low ion exchange capacities and limited water uptake properties. Moreover, it was found that the capacitive deionization performances and stabilities of the perfluorinated polymer membranes were superior to those of the commercial Fumatech membrane.

13.
Nanomaterials (Basel) ; 10(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105663

RESUMO

Capacitive deionization (CDI) based on ion electrosorption has recently emerged as a promising desalination technology due to its low energy consumption and environmental friendliness compared to conventional purification technologies. Carbon-based materials, including activated carbon (AC), carbon aerogel, carbon cloth, and carbon fiber, have been mostly used in CDI electrodes due their high surface area, electrochemical stability, and abundance. However, the low electrical conductivity and non-regular pore shape and size distribution of carbon-based electrodes limits the maximization of the salt removal performance of a CDI desalination system using such electrodes. Metal-organic frameworks (MOFs) are novel porous materials with periodic three-dimensional structures consisting of metal center and organic ligands. MOFs have received substantial attention due to their high surface area, adjustable pore size, periodical unsaturated pores of metal center, and high thermal and chemical stabilities. In this study, we have synthesized ZIF-67 using CNTs as a substrate to fully utilize the unique advantages of both MOF and nanocarbon materials. Such synthesis of ZIF-67 carbon nanostructures was confirmed by TEM, SEM, and XRD. The results showed that the 3D-connected ZIF-67 nanostructures bridging by CNTs were successfully prepared. We applied this nanostructured ZIF-67@CNT to CDI electrodes for desalination. We found that the salt removal performance was significantly enhanced by 88% for 30% ZIF-67@CNTs-included electrodes as compared with pristine AC electrodes. This increase in salt removal behavior was analyzed by electrochemical analysis such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements, and the results indicate reduced electrical impedance and enhanced electrode capacitance in the presence of ZIF-67@CNTs.

14.
Polymers (Basel) ; 12(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668771

RESUMO

In this study, we investigated a poly(ether-block-amide)-5513 (PEBAX-5513)/AgBF4/1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) composite membrane, which is expected to have a high stabilizing effect on the Ag+ ions functioning as olefin carriers in the amide group. Poly(ethylene oxide) (PEO) only consists of ether regions, whereas the PEBAX-5513 copolymer contains both ether and amide regions. However, given the brittle nature of the amide, the penetration of BMIMBF4 remains challenging. The nanoparticles did not stabilize after their formation in the long-term test, thereby resulting in a poor performance compared to previous experiments using PEO as the polymer (selectivity 3; permeance 12.3 GPU). The properties of the functional groups in the polymers were assessed using Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis, which confirmed that the properties endowed during the production of the film using the ionic liquid can impact the performance.

15.
Polymers (Basel) ; 12(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340116

RESUMO

To prepare a porous cellulose acetate (CA) for application as a battery separator, Cd(NO3)2·4H2O was utilized with water-pressure as an external physical force. When the CA was complexed with Cd(NO3)2·4H2O and exposed to external water-pressure, the water-flux through the CA was observed, indicating the generation of pores in the polymer. Furthermore, as the hydraulic pressure increased, the water-flux increased proportionally, indicating the possibility of control for the porosity and pore size. Surprisingly, the value above 250 LMH (L/m2h) observed at the ratio of 1:0.35 (mole ratio of CA: Cd(NO3)2·4H2O) was of higher flux than those of CA/other metal nitrate salts (Ni(NO3)2 and Mg(NO3)2) complexes. The higher value indicated that the larger and abundant pores were generated in the cellulose acetate at the same water-pressure. Thus, it could be thought that the Cd(NO3)2·4H2O salt played a role as a stronger plasticizer than the other metal nitrate salts such as Ni(NO3)2 and Mg(NO3)2. These results were attributable to the fact that the atomic radius and ionic radius of the Cd were largest among the three elements, resulting in the relatively larger Cd of the Cd(NO3)2 that could easily be dissociated into cations and NO3- ions. As a result, the free NO3- ions could be readily hydrated with water molecules, causing the plasticization effect on the chains of cellulose acetate. The coordinative interactions between the CA and Cd(NO3)2·4H2O were investigated by IR spectroscopy. The change of ionic species in Cd(NO3)2·4H2O was analyzed by Raman spectroscopy.

16.
Polymers (Basel) ; 12(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192086

RESUMO

poly ether-block-amide (PEBAX)-2533/metal salt/Al salt membranes were prepared for mixed olefin/paraffin separation. PEBAX-2533 with 80% ether group and 20% amide group was suggested as the polymer matrix for comparison of separation performance according to the functional group ratio in copolymer PEBAX. In addition, Al salts were used to stabilize metal ions for a long time as additives. High permeance was expected with the proportion of high ether groups, since these functional groups provided relatively permeable regions. As a result, the PEBAX-2533 composite membrane showed a selectivity of 5 (propylene/propane) with 10 GPU. However, the permeance of membrane was not unexpectedly improved and the selectivity was reduced. The result was analyzed by using SEM, RAMAN and thermogravimetric analysis (TGA), including Fourier transform infrared (FTIR). The reduction in separation performance was determined by using FT-IR. Based on these results, in order to stabilize the metal ions interacting with the polymer through Al(NO3)3, it was concluded that a specific ratio of the amide group was needed in PEBAX as a polymer matrix.

17.
Front Chem ; 8: 619832, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537287

RESUMO

All-solid-state batteries have gained significant attention as promising candidates to replace liquid electrolytes in lithium-ion batteries for high safety, energy storage performance, and stability under elevated temperature conditions. However, the low ionic conductivity and unsuitability of lithium metal in solid polymer electrolytes is a critical problem. To resolve this, we used a cubic garnet oxide electrolyte (Li7La3Zr2O12 - LLZO) and ionic liquid in combination with a polymer electrolyte to produce a composite electrolyte membrane. By applying a solid polymer electrolyte on symmetric stainless steel, the composite electrolyte membrane shows high ionic conductivity at elevated temperatures. The effect of LLZO in suppressing lithium dendrite growth within the composite electrolyte was confirmed through symmetric lithium stripping/plating tests under various current densities showing small polarization voltages. The full cell with lithium iron phosphate as the cathode active material achieved a highest specific capacity of 137.4 mAh g-1 and a high capacity retention of 98.47% after 100 cycles at a current density of 50 mA g-1 and a temperature of 60°C. Moreover, the specific discharge capacities were 137 and 100.8 mAh g-1 at current densities of 100 and 200 mA g-1, respectively. This research highlights the capability of solid polymer electrolytes to suppress the evolution of lithium dendrites and enhance the performance of all-solid-state batteries.

18.
J Nanosci Nanotechnol ; 20(2): 1039-1045, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383103

RESUMO

We report the effects of the nitride passivation layer on the structural, electrical, and interfacial properties of Ge metal-oxide-semiconductor (MOS) devices with a hafnium oxide (HfO2) gate dielectric layer deposited on p-type 〈100〉 Ge substrates. X-ray photoelectron spectroscopy analysis confirmed the chemical states and formation of HfO2/Ge3N4 on Ge. The interfacial quality and thickness of the layers grown on Ge were confirmed by high-resolution transmission electron microscopy. In addition, the effects of post-deposition annealing (PDA) on the HfO2/Ge3N4/Ge and HfO2/Ge samples at 400 °C in an (FG+O2) ambient atmosphere for 30 min were studied. After PDA, the HfO2/Ge3N4/Ge MOS device showed a higher dielectric constant (k) of ~21.48 and accumulation capacitance of 1.2 nF, smaller equivalent oxide thickness (EOT) of 1.2 nm, and lower interface trap density (Dit) of 4.9×1011 cm-2 eV-1 and oxide charges (Qeff) of 7.8×1012 cm-2 than the non-annealed sample. The I-V analysis showed that the gate leakage current density of the HfO2/Ge3N4/Ge sample (0.3-1 nA cm-2 at Vg = 1 V) was half of that of the HfO2/Ge sample. Moreover, the barrier heights of the samples were extracted from the Fowler-Nordheim plots. These results indicated that nitride passivation is crucial to improving the structural, interfacial, and electrical properties of Ge-based MOS devices.

19.
Micromachines (Basel) ; 10(10)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615080

RESUMO

Circulating tumor cells (CTCs) are important clinical markers for both cancer early diagnosis and prognosis. Various techniques have been developed in the past decade to isolate and quantify these cells from the blood while microfluidic technology attracts significant attention due to better controlled microenvironment. When combined with advanced nanotechnologies, CTC isolation performance in microfluidic devices can be further improved. In this article, by extending the wavy-herringbone concept developed earlier in our team, we prepared a hierarchical microfluidic chip by introducing a uniform coating of nanoparticles with anti-epithelial cell adhesion molecule (EpCAM) on wavy microgrooves. This hierarchical structured platform not only maintains the capture purity of the wavy-herringbone structure but improves the capture efficiency thanks to the larger surface area to volume ratio brought by nanoparticles. Our results demonstrated a capture efficiency of almost 100% at a low shear rate of 60/s. Even at a higher shear rate of 400/s, the hierarchical micro/nanostructures demonstrated an enhancement of up to ~3-fold for capture efficiency (i.e., 70%) and ~1.5-fold for capture purity (i.e., 68%), compared to wavy-herringbone structures without nanoparticle coating. With these promising results, this hierarchical structured platform represents a technological advancement for CTC isolation and cancer care.

20.
Front Chem ; 7: 361, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31192189

RESUMO

In this work, we show an effective ultrasonication-assisted self-assembly method under surfactant solution for a high-rate capable rGO-wrapped LiNi0.6Co0.2Mn0.2O2 (Ni-rich cathode material) composite. Ultrasonication indicates the pulverization of the aggregated bulk material into primary nanoparticles, which is effectively beneficial for synthesizing a homogeneous wrapped composite with rGO. The cathode composite demonstrates a high initial capacity of 196.5 mAh/g and a stable capacity retention of 83% after 100 cycles at a current density of 20 mA/g. The high-rate capability shows 195 and 140 mAh/g at a current density of 50 and 500 mA/g, respectively. The high-rate capable performance is attributed to the rapid lithium ion diffusivity, which is confirmed by calculating the transformation kinetics of the lithium ion by galvanostatic intermittent titration technique (GITT) measurement. The lithium ion diffusion rate (D Li) of the rGO-wrapped LiNi0.6Co0.2Mn0.2O2 composite is ca. 20 times higher than that of lithium metal plating on anode during the charge procedure, and this is demonstrated by the high interconnection of LiNi0.6Co0.2Mn0.2O2 and conductive rGO sheets in the composite. The unique transformation kinetics of the cathode composite presented in this study is an unprecedented verification example of a high-rate capable Ni-rich cathode material wrapped by highly conductive rGO sheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...