Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630608

RESUMO

A rapid and reproducible hydrophilic liquid chromatography (HILIC) process was established for concomitant determination of remogliflozin etabonate (RE), vildagliptin (VD), and metformin (MF) in a formulation. A face-centered central composite experimental design was employed to optimize and predict the chromatographic condition by statistically studying the surface response model and design space with desirability close to one. A HILIC column with a simple mobile phase of acetonitrile (65% v/v) and 20 mM phosphate buffer (35% v/v, pH 6, controlled with orthophosphoric acid) was used to separate RE, VD, and MF. RE, VD, and MF were separated in 3.6 min using an isocratic mode mobile phase flow at a flow rate of 1.4 mL at room temperature, and the analytes were examined by recording the absorption at 210 nm. The developed HILIC method was thoroughly validated for all parameters recommended by ICH, and linearity was observed in the ranges 20−150 µg/mL, 10−75 µg/mL, and 50−750 µg/mL for RE, VD, and MF, respectively, along with excellent regression coefficients (r2 > 0.999). The calculated percentage relative deviation and relative error ascertained the precision and accuracy of the method. The selectivity and accuracy were further confirmed by the high percentage recovery of added standard drugs to the formulation using the standard addition technique. The robustness of the HILIC processes was confirmed by developing a half-normal probability plot and Pareto chart, as the slight variation of a single factor had no significant influence on the assay outcomes. Utilization of the optimized HILIC procedure for concurrent quantification of RE, VD, and MF in solid dosage forms showed accurate and reproducible results. Hence, the fast HILIC method can be regularly employed for the quality assurance of pharmaceutical preparations comprising RE, VD, and MF.


Assuntos
Hipoglicemiantes , Metformina , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Metformina/química , Controle de Qualidade , Projetos de Pesquisa
3.
Korean J Physiol Pharmacol ; 25(4): 321-331, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34187949

RESUMO

Vancomycin, an antibiotic used occasionally as a last line of treatment for methicillin-resistant Staphylococcus aureus, is reportedly associated with nephrotoxicity. This study aimed at evaluating the protective effects of lutein against vancomycin-induced acute renal injury. Peroxisome proliferator-activated receptor gamma (PPARγ) and its associated role in renoprotection by lutein was also examined. Male BALB/c mice were divided into six treatment groups: control with normal saline, lutein (200 mg/kg), vancomycin (250 mg/kg), vancomycin (500 mg/kg), vancomycin (250 mg/kg) with lutein, and vancomycin (500 mg/kg) with lutein groups; they were euthanized after 7 days of treatment. Thereafter, samples of blood, urine, and kidney tissue of the mice were analyzed, followed by the determination of levels of N-acetyl-ß-D-glucosaminidase (NAG) in the urine, renal creatine kinase; protein carbonyl, malondialdehyde, and caspase-3 in the kidney; and the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor-kappaB (NF-κB) in renal tissue. Results showed that the levels of protein carbonyl and malondialdehyde, and the activity of NAG, creatine kinase and caspase-3, were significantly increased in the vancomycin-treatment groups. Moreover, the levels of Nrf2 significantly decreased, while NF-κB expression increased. Lutein ameliorated these effects, and significantly increased PPARγ expression. Furthermore, it attenuated vancomycin-induced histological alterations such as, tissue necrosis and hypertrophy. Therefore, we conclude that lutein protects against vancomycin-induced renal injury by potentially upregulating PPARγ/Nrf2 expression in the renal tissues, and consequently downregulating the pathways: inflammation by NF-κB and apoptosis by caspase-3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...