Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823415

RESUMO

Human injuries and casualties at entertaining, religious, or political crowd events often occur due to the lack of proper crowd safety management. For instance, for a large scale moving crowd, a minor accident can create a panic for the people to start stampede. Although many smart video surveillance tools, inspired by the recent advanced artificial intelligence (AI) technology and machine learning (ML) algorithms, enable object detection and identification, it is still challenging to predict the crowd mobility in real-time for preventing potential disasters. In this paper, we propose an intelligent crowd engineering platform using mobility characterization and analytics named ICE-MoCha. ICE-MoCha is to assist safety management for mobile crowd events by predicting and thus helping to prevent potential disasters through real-time radio frequency (RF) data characterization and analysis. The existing video surveillance based approaches lack scalability thus have limitations in its capability for wide open areas of crowd events. Via effectively integrating RF signal analysis, our approach can enhance safety management for mobile crowd. We particularly tackle the problems of identification, speed, and direction detection for the mobile group, among various crowd mobility characteristics. We then apply those group semantics to track the crowd status and predict any potential accidents and disasters. Taking the advantages of power-efficiency, cost-effectiveness, and ubiquitous availability, we specifically use and analyze a Bluetooth low energy (BLE) signal. We have conducted experiments of ICE-MoCha in a real crowd event as well as controlled indoor and outdoor lab environments. The results show the feasibility of ICE-MoCha detecting the mobile crowd characteristics in real-time, indicating it can effectively help the crowd management tasks to avoid potential crowd movement related incidents.

2.
Sensors (Basel) ; 18(12)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477145

RESUMO

Enterprise Wireless LANs (E-WLANs) such as airport WiFi, have become a convenient way for Internet access for mobile users. In an E-WLAN, access points (APs) are usually deployed with high-density around the infrastructure to provide sufficient coverage and for a better service, where a mobile user chooses one AP to associate with among multiple available APs in the vicinity. Many studies have been done on developing user association techniques to increase system performance, with various objectives including network throughput maximization, load balancing etc. Our work is unique in that we focused on bandwidth cost minimization via user association from the perspective of the E-WLAN operators. Specifically, by considering the bandwidth demands from mobile users, we modeled the joint user association and cost minimization problem in the heterogeneous E-WLAN with additional constraints from individual bandwidth demands as an optimization problem. To solve the optimization problem efficiently, we propose an approximation algorithm using relaxation and rounding techniques. We prove that the proposed algorithm has performance bound with a constant ratio to the optimization problem. Furthermore, our simulation results exhibit the superiority of our proposed algorithm over prior schemes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...