Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cells ; 45(5): 294-305, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35422451

RESUMO

E3 ligase BRUTUS (BTS), a putative iron sensor, is expressed in both root and shoot tissues in seedlings of Arabidopsis thaliana. The role of BTS in root tissues has been well established. However, its role in shoot tissues has been scarcely studied. Comparative transcriptome analysis with shoot and root tissues revealed that BTS is involved in regulating energy metabolism by modulating expression of mitochondrial and chloroplast genes in shoot tissues. Moreover, in shoot tissues of bts-1 plants, levels of ADP and ATP and the ratio of ADP/ATP were greatly increased with a concomitant decrease in levels of soluble sugar and starch. The decreased starch level in bts-1 shoot tissues was restored to the level of shoot tissues of wild-type plants upon vanadate treatment. Through this study, we expand the role of BTS to regulation of energy metabolism in the shoot in addition to its role of iron deficiency response in roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Metabolismo Energético/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta , Amido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Plant Cell Environ ; 44(9): 3034-3048, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34129248

RESUMO

Abiotic stress, a serious threat to plants, occurs for extended periods in nature. Abscisic acid (ABA) plays a critical role in abiotic stress responses in plants. Therefore, stress responses mediated by ABA have been studied extensively, especially in short-term responses. However, long-term stress responses mediated by ABA remain largely unknown. To elucidate the mechanism by which plants respond to prolonged abiotic stress, we used long-term ABA treatment that activates the signalling against abiotic stress such as dehydration and investigated mechanisms underlying the responses. Long-term ABA treatment activates constitutive photomorphogenic 1 (COP1). Active COP1 mediates the ubiquitination of golden2-like1 (GLK1) for degradation, contributing to lowering expression of photosynthesis-associated genes such as glutamyl-tRNA reductase (HEMA1) and protochlorophyllide oxidoreductase A (PORA), resulting in the suppression of chloroplast development. Moreover, COP1 activation and GLK1 degradation upon long-term ABA treatment depend on light intensity. Additionally, plants with COP1 mutation or exposed to higher light intensity were more sensitive to salt stress. Collectively, our results demonstrate that long-term treatment of ABA leads to activation of COP1 in a light intensity-dependent manner for GLK1 degradation to suppress chloroplast development, which we propose to constitute a mechanism of balancing normal growth and stress responses upon the long-term abiotic stress.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiologia , Cloroplastos/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Dimerização , Relação Dose-Resposta à Radiação , Luz , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
Front Plant Sci ; 9: 176, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515601

RESUMO

Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT), and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.

4.
Plant Cell ; 28(10): 2528-2544, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27697789

RESUMO

The phytohormone abscisic acid (ABA) plays crucial roles in various physiological processes, including responses to abiotic stresses, in plants. Recently, multiple ABA transporters were identified. The loss-of-function and gain-of-function mutants of these transporters show altered ABA sensitivity and stomata regulation, highlighting the importance of ABA transporters in ABA-mediated processes. However, how the activity of these transporters is regulated remains elusive. Here, we show that spatial regulation of ATP BINDING CASETTE G25 (ABCG25), an ABA exporter, is an important mechanism controlling its activity. ABCG25, as a soluble green fluorescent protein (sGFP) fusion, was subject to posttranslational regulation via clathrin-dependent and adaptor protein complex-2-dependent endocytosis followed by trafficking to the vacuole. The levels of sGFP:ABCG25 at the plasma membrane (PM) were regulated by abiotic stresses and exogenously applied ABA; PM-localized sGFP:ABCG25 decreased under abiotic stress conditions via activation of endocytosis in an ABA-independent manner, but increased upon application of exogenous ABA via activation of recycling from early endosomes in an ABA-dependent manner. Based on these findings, we propose that the spatial regulation of ABCG25 is an important component of the mechanism by which plants fine-tune cellular ABA levels according to cellular and environmental conditions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Ácido Abscísico/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
6.
J Anesth ; 24(3): 460-3, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20364275

RESUMO

Nonepileptic seizures are rare complication after general anesthesia. Postoperative seizure-induced oxidative stress promotes acute catecholamine toxicity of the myocardium. Takotsubo cardiomyopathy may be more frequent in the perioperative setting than commonly appreciated. We report a case of nonepileptic seizure developed during emergence from general anesthesia. The patient subsequently developed takotsubo cardiomyopathy. We now clearly recognize that patients with seizure activities after general anesthesia may be a higher risk for takotsubo cardiomyopathy.


Assuntos
Anestesia Geral , Discotomia Percutânea , Complicações Pós-Operatórias/etiologia , Convulsões/etiologia , Cardiomiopatia de Takotsubo/etiologia , Idoso , Eletrocardiografia , Eletroencefalografia , Feminino , Humanos , Deslocamento do Disco Intervertebral/cirurgia , Dor Lombar/cirurgia , Contração Miocárdica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...