Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(32): e2203715, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36192160

RESUMO

The present work describes the development of an organic photodiode (OPD) receiver for high-speed optical wireless communication. To determine the optimal communication design, two different types of photoelectric conversion layers, bulk heterojunction (BHJ) and planar heterojunction (PHJ), are compared. The BHJ-OPD device has a -3 dB bandwidth of 0.65 MHz (at zero bias) and a maximum of 1.4 MHz (at -4 V bias). A 150 Mbps single-channel visible light communication (VLC) data rate using this device by combining preequalization and machine learning (ML)-based digital signal processing (DSP) is demonstrated. To the best of the authors' knowledge, this is the highest data rate ever achieved on an OPD-based VLC system by a factor of 40 over the previous fastest reported. Additionally, the proposed OPD receiver achieves orders of magnitude higher spectral efficiency than the previously reported organic photovoltaic (OPV)-based receivers.

2.
Adv Sci (Weinh) ; 9(31): e2203903, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36055795

RESUMO

The light-emitting dipole orientation (EDO) of a phosphorescent emitter is a key to improving the external quantum efficiency (EQE) of organic light-emitting diodes (OLEDs) without structural modification of the device. Here, four homoleptic Ir complexes as a phosphorescent emitter are systematically designed based on the molecular structure of tris(2-phenylpyridine)iridium(III) (Ir(ppy)3 ) to control the EDO. Trimethylsilane, methyl, 2-methylpropyl, and cyclopentylmethyl group substituted to pyridine ring of the ligand contribute to the improvement of the EDO from 76.5% for Ir(ppy)3 to 87.5%. A linear relationship between the EDO and the aspect ratio (geometric anisotropy factor) is founded, implying the importance of the effective area for the nonbonding force between host and dopant molecules. Also, it is investigated that the EDO enhancement mainly originates from the vertical alignment of the C3 axis of molecule in the substrate axis rather than the change in the direction of the transition dipole alignment in the molecular axis. The optical simulation reveals that the outcoupling efficiency of phosphorescent OLEDs adopting new dopants reaches 38.4%. The green OLEDs exhibiting 28.3% of EQE, 103.2 cd A-1 of current efficiency, and 98.2 lm W-1 of power efficiency are demonstrated, which is understood to have little electrical loss.

3.
Nat Commun ; 13(1): 3745, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768429

RESUMO

Organic photodetectors (OPDs) exhibit superior spectral responses but slower photoresponse times compared to inorganic counterparts. Herein, we study the light-intensity-dependent OPD photoresponse time with two small-molecule donors (planar MPTA or twisted NP-SA) co-evaporated with C60 acceptors. MPTA:C60 exhibits the fastest response time at high-light intensities (>0.5 mW/cm2), attributed to its planar structure favoring strong intermolecular interactions. However, this blend exhibits the slowest response at low-light intensities, which is correlated with biphasic photocurrent transients indicative of the presence of a low density of deep trap states. Optical, structural, and energetical analyses indicate that MPTA molecular packing is strongly disrupted by C60, resulting in a larger (370 meV) HOMO level shift. This results in greater energetic inhomogeneity including possible MPTA-C60 adduct formation, leading to deep trap states which limit the low-light photoresponse time. This work provides important insights into the small molecule design rules critical for low charge-trapping and high-speed OPD applications.

4.
Phys Chem Chem Phys ; 24(26): 15982-15990, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730698

RESUMO

Cyclopentadienyl complexes of barium have great utility in materials science and engineering, in particular, as precursors in the atomic layer deposition processes, which are required to be fluidic as well as thermally stable and volatile. Here, we investigated the liquid-like properties of cyclopentadienyl barium complexes including (Me5C5)2Ba, (tBu3C5H2)2Ba, (iPr4C5H)2Ba, (iPr5C5)2Ba, and [(SiMe3)3C5H2]2Ba, using molecular dynamics simulations of nanoscale droplets. The compounds were modeled using a recently developed generic force field, GFN-FF. Nanoscale droplets with about 5.0 nm diameters were formed by aggregating 96 molecules of each compound. Simulation results reveal that substituting methyl groups of (Me5C5)2Ba with other alkyl and silyl moieties has a non-negligible effect on the intra- and intermolecular structure and dynamics. In particular, in contrast to more flexible (Me5C5)2Ba, the substitution with five iso-propyl groups to form (iPr5C5)2Ba adds rigidity to the complex with restricted orientational fluctuations for two cyclopentadienyl ligands and arranges molecules parallel to each other with greater probability. In addition, comparison between (tBu3C5H2)2Ba, with three tert-butyl groups, and its silyl analogue, [(SiMe3)3C5H2]2Ba, reveals that intermolecular interactions between the molecules with silyl groups are softer than those with tert-butyl groups and result in broader radial distribution functions, whereas the dynamic properties are similar for both compounds. This work suggests that molecular dynamics simulations contribute to molecular-level understanding of the effect of chemical substitution in organometallic compounds on the intra- and intermolecular properties of molecular liquids.

5.
ACS Appl Mater Interfaces ; 14(3): 4360-4370, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34890196

RESUMO

A novel series of donor (D)-π-acceptor (A) merocyanine molecules harnessed with intramolecular chalcogen bonding (ChaB) is designed, synthesized, and characterized. ChaB comprises periodic chalcogen atoms, S, Se, and Te, and a neighboring oxygen atom of a carbonyl moiety. Compared to the D-π-A merocyanine dye with nontraditional intramolecular hydrogen bonding, the novel molecules with an intramolecular ChaB exhibit remarkably smaller absorption spectral widths and higher absorption coefficients attributed to their cyanine-like characteristics approaching the resonance parameter (c2) ∼0.5; furthermore, they exhibit better thermal stabilities and electrical charge-carrier transport properties in films. These novel D-π-A merocyanines harnessed with intramolecular ChaB networks are successfully utilized in high-performance color-selective organic photon-to-current conversion optoelectronic devices with excellent thermal stabilities. This study reports that the unique intramolecular ChaB plays an essential role in locking the molecular conformation of merocyanine molecules and enhancing the optical, thermal, and optoelectronic properties of high-performance and high-efficiency organic photon-to-current conversion devices.

6.
J Phys Chem A ; 124(46): 9589-9596, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33170694

RESUMO

The design of stable organic light-emitting diode materials is the key to long lifetime displays under various stressful conditions. Elucidating the degradation mechanism of the materials at the molecular level provides useful information for securing high stability. Previous works based on experiments or computations disclosed only a part of the whole degradation process. Here, we propose a holistic approach to the systematic analysis of the degradation mechanism by combining experimental mass analysis and computation in a semi-automated fashion. The mass analysis identifies molecular weights of feasible products from degradation reactions. Then, the computational analysis goes through initiation, propagation, and termination phases. The initiation phase determines radical fragments and reactive sites, triggering the propagation process. In the propagation phase, we subsequently perform intermediate sampling, reaction network construction, and kinetic analysis. As a proof of concept, this approach was applied to the thermal degradation problem during the sublimation purification process. Two major pathways were successfully elucidated with full atomistic details.

7.
Adv Mater ; 32(48): e2004421, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33119173

RESUMO

The isotope effect is studied in the magneto-electroluminescence (MEL) and pulsed electrically detected magnetic resonance of organic light-emitting diodes based on thermally activated delayed fluorescence (TADF) from donor-acceptor exciplexes that are either protonated (H) or deuterated (D). It is found that at ambient temperature, the exchange of H to D has no effect on the spin-dependent current and MEL responses in the devices. However, at cryogenic temperatures, where the reverse intersystem crossing (RISC) from triplet to singlet exciplex diminishes, a pronounced isotope effect is observed. These results show that the RISC process is not governed by the hyperfine interaction as thought previously, but proceeds through spin-mixing in the triplet exciplex. The observations are corroborated by electrically detected transient spin nutation experiments that show relatively long dephasing time at ambient temperature, and interpreted in the context of a model that involves exchange and hyperfine interactions in the spin triplet exciplex. These findings deepen the understanding of the RISC process in TADF materials.

8.
J Chem Theory Comput ; 16(9): 5845-5851, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32786920

RESUMO

We present a theoretical method based on molecular dynamics (MD) simulations for the prediction of saturated vapor pressure of liquids constituting of large organic molecules at various temperatures. The approach is based on free energy calculations at a fixed temperature and a subsequent Gibbs-Duhem integration over the interval of temperatures. Results of the theoretical approach are compared with experimental measurements for a set of six molecules utilized in organic light-emitting diodes (OLEDs). Good correspondence of theoretical and experimental results suggests the developed methodology as a useful tool in various areas of molecular design, which require prediction of vapor pressures for liquids of large and chemically diverse compounds.

9.
Nat Commun ; 11(1): 2292, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385259

RESUMO

The excellent contrast ratio, visibility, and advantages in producing thin and light displays let organic light emitting diodes change the paradigm of the display industry. To improve future display technologies, higher electroluminescence efficiency is needed. Herein, the detailed study of the non-radiative decay mechanism employing density functional theory calculations is carried out and a simple, general strategy for the design of the ancillary ligand is formulated. It is shown that steric bulk properly directed towards the phenylisoquinoline ligands can significantly reduce the non-radiative decay rate.

10.
ACS Appl Mater Interfaces ; 11(48): 45161-45170, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31718137

RESUMO

The realization of high-efficiency solution-processed organic light-emitting diodes (OLEDs) using phosphorescent tetradentate Pt(II) emitters and bipolar organic hosts is demonstrated in this work. To investigate the effect of organic host on the platinum dopant, the performances of solution-processed Pt-OLEDs with various combinations between four tetradentate Pt(II) emitters, including two newly developed tetra-Pt-S2 and tetra-Pt-S3 and three bipolar organic hosts m-TPAPy, o-TPAPy, and o-CzPy, have been analyzed and compared. Among the tetradentate Pt(II) complexes studied in this work, tetra-Pt-S3 exhibited the best electroluminescent performance attributable to its bulky molecular scaffold structure, high emission quantum yield, and good solubility in common organic solvents. High external quantum efficiencies (EQEs) of up to 22.4% were achieved in the solution-processed OLED with tetra-Pt-S3 emitter and m-TPAPy host at the dopant concentration of 4 wt %. At a high luminance of 1000 cd m-2, the EQE of this device decreased slightly to 21.0%.

11.
ACS Appl Mater Interfaces ; 11(33): 30072-30078, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31339685

RESUMO

Magneto-electroluminescence (MEL) represents the electroluminescence intensity change upon application of an external magnetic field. We show that the MEL field response in "magnetic" organic light-emitting diodes, where one electrode is ferromagnetic (FM), is a powerful technique for measuring the induced fringe field, B⃗F, from the FM electrode in the organic layer. We found that the in-plane fringe field, B⃗F∥, from 3 nm Co and Ni80Fe20 FM electrodes is proportional to the applied field, B⃗∥. The fringe field of the 3 nm Ni80Fe20 film was also investigated for an applied out-of-plane magnetic field, B⃗⊥. We found that the out-of-plane fringe field has two components: a component that is parallel or antiparallel to B⃗⊥ and remains unchanged with the distance, d, from the FM electrode and the other component that is highly inhomogeneous, parallel to the surface, and steeply decreases with d. We show that the obtained B⃗F is independent of the underlying mechanism for the MEL(B) response and thus may be considered universal.

12.
Chemphyschem ; 19(14): 1711-1715, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29719110

RESUMO

We examined how to enhance the lifetime of organic light-emitting diodes (OLEDs) based on bipolar host molecules ET-HT, where ET and HT refer to electron- and hole-transporting units, respectively, by analyzing their thermodynamic and kinetic stabilities. Our DFT calculations reveal that the thermodynamic stability of ET-HT is determined by that of its anion, which is difficult to improve by chemical modifications of ET and HT. The kinetic stability of ET-HT can be enhanced by the spiroconjugation between ET and HT, which occurs when their π-frameworks are extended and have an orthogonal arrangement. Green OLED devices were fabricated by using ET-HTs with and without spiroconjugation, to find that the device with spiroconjugation has a lifetime that is approximately 6 times longer than the one without spiroconjugation.

13.
J Nanosci Nanotechnol ; 10(10): 6925-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21137826

RESUMO

We report blue fluorescent organic light-emitting devices (OLED) by solution process utilizing a blue emitting small molecule, 2,7-bis[(9-ethyl-9H-carbazol-3-yl)ethenyl]-9,9-bis(4-n-octyloxyphenyl)-9H-fluorene (CB), which has good solubility in common organic solvent. The peak positions of absorption and emission spectra of a new fluorene-based molecule in tetrahydrofuran solution were observed at 399 and 439 nm, respectively. We achieved a maximum luminous efficiency of approximately 3 cd/A with CIE color coordinates of (0.15, 0.15) in our device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...