Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
J Pers Med ; 14(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38929866

RESUMO

Hyperinflammation occurs in sepsis, especially in the early phase, and it could have both positive and negative effects on sepsis. Previously, we showed that a new concept of NF-κB inhibitor, exosome-based super-repressor IκBα (Exo-srIκB) delivery, has a beneficial effect on sepsis. Here, we further investigate the therapeutic effects of Exo-srIκB at different severities and phases of sepsis using an animal polymicrobial intra-abdominal infection model. We used a rat model of fecal slurry polymicrobial sepsis. First, we determined the survival effects of Exo-srIκB on sepsis according to the severity. We used two different severities of the animal sepsis model. The severe model had a mortality rate of over 50%. The mild/moderate model had a less than 30% mortality rate. Second, we administered the Exo-srIκB at various time points (1 h, 6 h, and 24 h after fecal slurry administration) to determine the therapeutic effect of Exo-srIκB at different phases of sepsis. Lastly, we determined the effects of the Exo-srIκB on cytokine production, arterial blood gas, electrolyte, and lactate. The survival gain was statistically significant in the severe sepsis model when Exo-srIκB was administered 6 h after sepsis. Interleukin 6 and interleukin-10 were significantly decreased in the kidney when administered with Exo-srIκB. The laboratory data showed that lactate, glucose, and potassium levels were significantly lowered in the NF-κB inhibitor group. In conclusion, Exo-srIκB exhibited a beneficial therapeutic effect when administered 6 h post fecal slurry administration in a severe sepsis model.

2.
Stem Cells Transl Med ; 13(7): 637-647, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838263

RESUMO

Extracellular vesicles, particularly exosomes, have emerged as promising drug delivery systems owing to their unique advantages, such as biocompatibility, immune tolerability, and target specificity. Various engineering strategies have been implemented to harness these innate qualities, with a focus on enhancing the pharmacokinetic and pharmacodynamic properties of exosomes via payload loading and surface engineering for active targeting. This concise review outlines the challenges in the development of exosomes as drug carriers and offers insights into strategies for their effective clinical translation. We also highlight preclinical studies that have successfully employed anti-inflammatory exosomes and suggest future directions for exosome therapeutics. These advancements underscore the potential for integrating exosome-based therapies into clinical practice, heralding promise for future medical interventions.


Assuntos
Sistemas de Liberação de Medicamentos , Exossomos , Exossomos/metabolismo , Humanos , Sistemas de Liberação de Medicamentos/métodos , Animais , Portadores de Fármacos/química
3.
Animals (Basel) ; 14(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254451

RESUMO

Canine atopic dermatitis (CAD) is a genetically predisposed inflammatory pruritic skin disease. The available treatments for CAD have several adverse effects and vary in efficacy, indicating the need for the development of improved treatments. In this study, we aimed to elucidate the therapeutic effects of allogeneic and xenogeneic exosomes on CAD. Six laboratory beagle dogs with CAD were randomly assigned to three treatment groups: control, canine exosome (cExos), or human exosome (hExos) groups. Dogs in the cExos and hExos groups were intravenously administered 1.5 mL of cExos (5 × 1010) and hExos (7.5 × 1011) solutions, respectively, while those in the control group were administered 1.5 mL of normal saline three times per week for 4 weeks. Skin lesion score and transepidermal water loss decreased in cExos and hExos groups compared with those in the control group. The exosome treatments decreased the serum levels of inflammatory cytokines (interferon-γ, interleukin-2, interleukin-4, interleukin-12, interleukin-13, and interleukin-31) but increased those of anti-inflammatory cytokines (interleukin-10 and transforming growth factor-ß), indicating the immunomodulatory effect of exosomes. Skin microbiome analysis revealed that the exosome treatments alleviated skin bacterial dysbiosis. These results suggest that allogeneic and xenogeneic exosome therapy may alleviate CAD in dogs.

4.
Arthritis Res Ther ; 26(1): 2, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167497

RESUMO

BACKGROUND: This study aims to investigate the potential anti-inflammatory effects of exosomes engineered to carry super-repressor IκB (Exo-srIκB), an exosome-based NF-κB inhibitor, in the context of RA. METHODS: Peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) were collected from patients diagnosed with RA and treated with Exo-srIκB to test the therapeutic potential. Flow cytometry analysis was performed to assess the production of inflammatory cytokines (IL-17A and GM-CSF) by the cells. ELISA was utilized to measure the levels of TNF-α, IL-17A, IL-6, and GM-CSF. Arthritis was induced in SKG mice by intraperitoneal injection of curdlan. DBA/1 J mice were used in collagen-induced arthritis (CIA) experiments. After the development of arthritis, mice were injected with either Exo-Naïve (control exosome) or Exo-srIκB. Arthritis scores were recorded biweekly, and histological observations of the ankle joint were conducted using H&E and safranin-O staining. Additionally, bone erosion was evaluated using micro-CT imaging. RESULTS: In the ex vivo study involving human PBMCs and SFMCs, treatment with Exo-srIκB demonstrated a notable reduction in inflammatory cytokines. Furthermore, in both the SKG and CIA models, Exo-srIκB treatment exhibited significant reductions in inflammation, cartilage destruction, and bone erosion within the joint tissues when compared to the Exo-Naive control group. Additionally, the radiographic score assessed through microCT showed a significant decrease compared to the Exo-Naive control group. CONCLUSION: Overall, these findings suggest that Exo-srIκB possesses anti-inflammatory properties in human RA cells and animal models, making it a promising therapeutic candidate for the treatment of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Exossomos , Humanos , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interleucina-17 , Inibidor de NF-kappaB alfa , Leucócitos Mononucleares/patologia , Camundongos Endogâmicos DBA , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Inflamação/tratamento farmacológico , Citocinas , Artrite Experimental/patologia , Anti-Inflamatórios/uso terapêutico
5.
BMB Rep ; 56(11): 594-599, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37357538

RESUMO

A number of therapeutic drugs have been developed from functional chemicals found in plants. Knowledge of plants used for medicinal purposes has historically been transmitted by word of mouth or through literature. The aim of the present study is to provide a systemic platform for the development of lead compounds against breast cancer based on a traditional medical text. To verify our systematic approach, integrating processes consisted of text mining of traditional medical texts, 3-D virtual docking screening, and in vitro and in vivo experimental validations were demonstrated. Our text analysis system identified rutin as a specific phytochemical traditionally used for cancer treatment. 3-D virtual screening predicted that rutin could block EGFR signaling. Thus, we validated significant anticancer effects of rutin against breast cancer cells through blockade of EGFR signaling pathway in vitro. We also demonstrated in vivo anti-cancer effects of rutin using the breast cancer recurrence in vivo models. In summary, our innovative approach might be proper for discovering new phytochemical lead compounds designing for blockade of malignant neoplasm including breast cancer. [BMB Reports 2023; 56(11): 594-599].


Assuntos
Neoplasias da Mama , Plantas Medicinais , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Plantas Medicinais/química , Compostos Fitoquímicos , Transdução de Sinais , Receptores ErbB
6.
Cytotherapy ; 25(8): 810-814, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36931996

RESUMO

The International Society for Cell & Gene Therapy Scientific Signature Series event "Therapeutic Advances With Native and Engineered Human EVs" took place as part of the International Society for Cell & Gene Therapy 2022 Annual Meeting, held from May 4 to 7, 2022, in San Francisco, California, USA. This was the first signature series event on extracellular vesicles (EVs) and a timely reflection of the growing interest in EVs, including both native and engineered human EVs, for therapeutic applications. The event successfully gathered academic and industrial key opinion leaders to discuss the current state of the art in developing and understanding native and engineered EVs and applying our knowledge toward advancing EV therapeutics. Latest advancements in understanding the mechanisms by which native and engineered EVs exert their therapeutic effects against different diseases in animal models were presented, with some diseases such as psoriasis and osteoarthritis already reaching clinical testing of EVs. The discussion also covered various aspects relevant to advancing the clinical translation of EV therapies, including EV preparation, manufacturing, consistency, site(s) of action, route(s) of administration, and luminal cargo delivery of RNA and other compounds.


Assuntos
Vesículas Extracelulares , Animais , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética
7.
Pharmaceutics ; 15(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36839876

RESUMO

Complex regional pain syndrome (CRPS) is a condition associated with neuropathic pain that causes significant impairment of daily activities and functioning. Nuclear factor kappa B (NFκB) is thought to play an important role in the mechanism of CRPS. Recently, exosomes loaded with super-repressor inhibitory kappa B (Exo-srIκB, IκB; inhibitor of NFκB) have been shown to have potential anti-inflammatory effects in various inflammatory disease models. We investigated the therapeutic effect of Exo-srIκB on a rodent model with chronic post-ischemia pain (CPIP), a representative animal model of Type I CRPS. After intraperitoneal injection of a vehicle, Exo-srIκB, and pregabalin, the paw withdrawal threshold (PWT) was evaluated up to 48 h. Administration of Exo-srIκB increased PWT compared to the vehicle and pregabalin, and the relative densities of p-IκB and IκB showed significant changes compared to the vehicle 24 h after Exo-srIκB injection. The levels of several cytokines and chemokines were reduced by the administration of Exo-srIκB in mice with CPIP. In conclusion, our results showed more specifically the role of NFκB in the pathogenesis of CRPS and provided a theoretical background for novel treatment options for CRPS.

8.
Pharmaceutics ; 15(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36839957

RESUMO

Activation of Kupffer cells (KCs) by gut-derived lipopolysaccharide (LPS) instigates nuclear factor-κB (NF-κB)-mediated inflammatory responses in alcohol-associated liver diseases (ALD). Here, we utilized a novel optogenetically engineered exosome technology called 'exosomes for protein loading via optically reversible protein-protein interactions (EXPLOR)' to efficiently deliver the super-repressor IκB-loaded exosomes (Exo-srIκB) to the liver and examined its therapeutic potential in acute-on-chronic alcohol-associated liver injury. We detected enhanced uptake of DiI-labeled Exo-srIκB by LPS-treated inflammatory KCs, which suppressed LPS-induced inflammatory gene expression levels. In animal experiments, a single intravenous injection of Exo-srIκB prior to alcohol binge drinking significantly attenuated alcohol-associated hepatic steatosis and infiltration of neutrophils and macrophages but not a liver injury. Notably, three consecutive days of Exo-srIκB injection remarkably reduced alcohol-associated liver injury, steatosis, apoptosis of hepatocytes, fibrosis-related gene expression levels in hepatic stellate cells, infiltration of neutrophils and macrophages, and inflammatory gene expression levels in hepatocytes and KCs. In particular, the above effects occurred with inhibition of nuclear translocation of NF-κB in liver tissues, and these beneficial effects of Exo-srIκB on ALD were shown regardless of doses. Our results suggest an exosome-based modulation of NF-κB activity in KCs by Exo-srIκB as a novel and efficient therapeutic approach in ALD.

9.
Cell Mol Life Sci ; 79(10): 537, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36183290

RESUMO

Contact-based pericellular interactions play important roles in cancer progression via juxtacrine signaling pathways. The present study revealed that hypoxia-inducible factor-1α (HIF-1α), induced even in non-hypoxic conditions by cell-to-cell contact, was a critical cue responsible for the malignant characteristics of glioblastoma multiforme (GBM) cells through Notch1 signaling. Densely cultured GBM cells showed enhanced viability and resistance to temozolomide (TMZ) compared to GBM cells at a low density. Ablating Notch1 signaling by a γ-secretase inhibitor or siRNA transfection resensitized resistant GBM cells to TMZ treatment and decreased their viability under dense culture conditions. The expression of HIF-1α was significantly elevated in highly dense GBM cells even under non-hypoxic conditions. Atypical HIF-1α expression was associated with the Notch1 signaling pathway in both GBM and glioblastoma stem cells (GSC). Proteasomal degradation of HIF-1α was prevented by binding with Notch1 intracellular domain (NICD), which translocated to the nuclei of GBM cells. Silencing Notch1 signaling using a doxycycline-inducible Notch1 RNA-interfering system or treatment with chetomin, a HIF pathway inhibitor, retarded tumor development with a significant anti-cancer effect in a murine U251-xenograft model. Using GBM patient tissue microarray analysis, a significant increase in HIF-1α expression was identified in the group with Notch1 expression compared to the group without Notch1 expression among those with positive HIF-1α expression. Collectively, these findings highlight the critical role of cell-to-cell contact-dependent signaling in GBM progression. They provide a rationale for targeting HIF-1α signaling even in a non-hypoxic microenvironment.


Assuntos
Glioblastoma , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Doxiciclina , Glioblastoma/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , RNA Interferente Pequeno/genética , Receptor Notch1/genética , Transdução de Sinais , Temozolomida , Microambiente Tumoral
10.
Int J Oncol ; 61(4)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36043525

RESUMO

Despite the high expression of neuropilin­1 (NRP­1) in human glioblastoma (GB), the understanding of its function as a co­receptor of vascular endothelial growth factor receptors (VEGFRs) in angiogenesis is currently limited. Therefore, the aim of the present study was to elucidate the non­classical function of NRP­1 expression in human GB. Expression patterns of NRP­1 and VEGF­A were determined by sandwich ELISA, western blot analysis, or immunohistochemistry. Differential dependency of GB cells following ablation of VEGF­A signaling was validated in vitro and in vivo. Cellular mechanism responsible for distinct response to VEGF­A signaling was evaluated by western blotting and immunoprecipitation analysis. Prognostic implications were assessed using IHC analysis. GB cells exhibited differing sensitivity to silencing of vascular endothelial growth factor (VEGF)­A signaling, which resulted in a distinct expression pattern of wild­type or chondroitin­sulfated NRP­1. VEGF­A­sensitive GB exhibited the physical interaction between wild­type NRP­1 and FMS related receptor tyrosine kinase 1 (Flt­1) whereas VEGF­A­resistant GB exhibited chondroitin­sulfated NRP­1 without interaction with Flt­1. Eliminating the chondroitin sulfate modification in NRP­1 led to re­sensitization to VEGF­A signaling, and chondroitin sulfate modification was found to be associated with an adverse prognosis in patients with GB. The present study identified the distinct functions of NRP­1 in VEGF­A signaling in accordance with its unique expression type and interaction with Flt­1. The present research is expected to provide a strong basis for targeting VEGF­A signaling in patients with GB, with variable responses.


Assuntos
Glioblastoma , Neuropilina-1 , Fator A de Crescimento do Endotélio Vascular , Sulfatos de Condroitina , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Neuropilina-1/genética , Neuropilina-1/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Pharmaceutics ; 14(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35745690

RESUMO

For the successful clinical advancement of exosome therapeutics, the biodistribution and pharmacokinetic profile of exogenous exosomes in various animal models must be determined. Compared with fluorescence or bioluminescence imaging, radionuclide imaging confers multiple advantages for the in vivo tracking of biomolecular therapeutics because of its excellent sensitivity for deep tissue imaging and potential for quantitative measurement. Herein, we assessed the quantitative biodistribution and pharmacokinetics of good manufacturing practice-grade therapeutic exosomes labeled with zirconium-89 (89Zr) after systemic intravenous administration in mice and rats. Quantitative biodistribution analysis by positron emission tomography/computed tomography and gamma counting in mice and rats revealed that the total 89Zr signals in the organs were lower in rats than in mice, suggesting a higher excretion rate of exosomes in rats. A prolonged 89Zr signal for up to 7 days in most organs indicated that substantial amounts of exosomes were taken up by the parenchymal cells in those organs, highlighting the therapeutic potential of exosomes for the intracellular delivery of therapeutics. Exosomes were mainly distributed in the liver and to a lesser extent in the spleen, while a moderately distributed in the kidney, lung, stomach, intestine, urinary bladder, brain, and heart. Exosomes were rapidly cleared from the blood circulation, with a rate greater than that of free 89Zr, indicating that exosomes might be rapidly taken up by cells and tissues.

12.
Mol Cells ; 45(5): 284-290, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35534190

RESUMO

Process of manufacturing therapeutics exosome development for commercialization. The development of exosome treatment starts at the bench, and in order to be commercialized, it goes through the manufacturing, characterization, and formulation stages, production under Good Manufacturing Practice (GMP) conditions for clinical use, and close consultation with regulatory authorities. Exosome, a type of nanoparticles also known as small extracellular vesicles are gaining attention as novel therapeutics for various diseases because of their ability to deliver genetic or bioactive molecules to recipient cells. Although many pharmaceutical companies are gradually developing exosome therapeutics, numerous hurdles remain regarding manufacture of clinical-grade exosomes for therapeutic use. In this mini-review, we will discuss the manufacturing challenges of therapeutic exosomes, including cell line development, upstream cell culture, and downstream purification process. In addition, developing proper formulations for exosome storage and, establishing good manufacturing practice facility for producing therapeutic exosomes remains as challenges for developing clinicalgrade exosomes. However, owing to the lack of consensus regarding the guidelines for manufacturing therapeutic exosomes, close communication between regulators and companies is required for the successful development of exosome therapeutics. This review shares the challenges and perspectives regarding the manufacture and quality control of clinical grade exosomes.


Assuntos
Exossomos , Vesículas Extracelulares , Técnicas de Cultura de Células , Linhagem Celular , Sistemas de Liberação de Medicamentos , Exossomos/metabolismo
13.
Pharmaceutics ; 14(3)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35336049

RESUMO

Delivering therapeutics to the central nervous system (CNS) is difficult because of the blood-brain barrier (BBB). Therapeutic delivery across the tight junctions of the BBB can be achieved through various endogenous transportation mechanisms. Receptor-mediated transcytosis (RMT) is one of the most widely investigated and used methods. Drugs can hijack RMT by expressing specific ligands that bind to receptors mediating transcytosis, such as the transferrin receptor (TfR), low-density lipoprotein receptor (LDLR), and insulin receptor (INSR). Cell-penetrating peptides and viral components originating from neurotropic viruses can also be utilized for the efficient BBB crossing of therapeutics. Exosomes, or small extracellular vesicles, have gained attention as natural nanoparticles for treating CNS diseases, owing to their potential for natural BBB crossing and broad surface engineering capability. RMT-mediated transport of exosomes expressing ligands such as LDLR-targeting apolipoprotein B has shown promising results. Although surface-modified exosomes possessing brain targetability have shown enhanced CNS delivery in preclinical studies, the successful development of clinically approved exosome therapeutics for CNS diseases requires the establishment of quantitative and qualitative methods for monitoring exosomal delivery to the brain parenchyma in vivo as well as elucidation of the mechanisms underlying the BBB crossing of surface-modified exosomes.

14.
Membranes (Basel) ; 12(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35054611

RESUMO

Among extracellular vesicles, exosomes have gained great attention for their role as therapeutic vehicles for delivering various active pharmaceutical ingredients (APIs). Exosomes "armed" with anti-cancer therapeutics possess great potential for an efficient intracellular delivery of anti-cancer APIs and enhanced targetability to tumor cells. Various technologies are being developed to efficiently incorporate anti-cancer APIs such as genetic materials (miRNA, siRNA, mRNA), chemotherapeutics, and proteins into exosomes and to induce targeted delivery to tumor burden by exosomal surface modification. Exosomes can incorporate the desired therapeutic molecules via direct exogenous methods (e.g., electroporation and sonication) or indirect methods by modifying cells to produce "armed" exosomes. The targeted delivery of "armed" exosomes to tumor burden could be accomplished either by "passive" targeting using the natural tropism of exosomes or by "active" targeting via the surface engineering of exosomal membranes. Although anti-cancer exosome therapeutics demonstrated promising results in preclinical studies, success in clinical trials requires thorough validation in terms of chemistry, manufacturing, and control techniques. While exosomes possess multiple advantages over synthetic nanoparticles, challenges remain in increasing the loading efficiency of anti-cancer agents into exosomes, as well as establishing quantitative and qualitative analytical methods for monitoring the delivery of in vivo administered exosomes and exosome-incorporated anti-cancer agents to the tumor parenchyma.

15.
BMB Rep ; 55(1): 1-2, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35074043

RESUMO

Extracellular vesicles (EVs), especially exosomes, are cell-derived nanoparticles harboring various cellular components such as RNAs, lipids, and proteins for intercellular communication. Roles of EVs as intercellular communicators have been extensively studied in the last few decades, especially under various pathological conditions. Deciphering the message in EVs isolated from biological fluids of patients can provide valuable information not only for disease diagnosis, but also for disease monitoring or treatment responses. EVs are also attractive treatment modality and drug delivery system with favorable properties of biocompatibility, selective tropism, and stability. Stem cell-derived naïve EVs have been tested for their regenerative or immunomodulatory effects in numerous preclinical and clinical studies. This so-called "cell-free cell therapy" is supported by the idea that most therapeutic actions of conventional cell therapy are mediated by paracrine action of EVs released from stem cells. In that sense, immune cell-derived EVs are regarded as a reasonable option for cancer immunotherapy. Such therapeutic effect of EVs can be dramatically augmented by incorporating active pharmaceutical ingredients (APIs) to make engineered exosomes as "Trojan Horses". Biomimetic EVs or cell-derived nanovesicles can be generated through various physicochemical methos such as serial extrusion. They provide alternative options due to their high productivity and relatively easy purification. In this special issue, therapeutic applications of naïve or engineered EVs are discussed in various human diseases including cardiovascular diseases, renal disorders, neurological diseases, cancers, and infectious diseases focusing on COVID-19. [BMB Reports 2022; 55(1): 1-2].


Assuntos
Doença , Exossomos/metabolismo , Barreira Hematoencefálica/patologia , COVID-19/epidemiologia , COVID-19/terapia , COVID-19/virologia , Humanos , Neoplasias/patologia , Neoplasias/terapia , Pandemias , SARS-CoV-2/fisiologia
16.
Tissue Eng Regen Med ; 18(4): 499-511, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34260047

RESUMO

Exosomes are cell-secreted nano-sized vesicles which deliver diverse biological molecules for intercellular communication. Due to their therapeutic potential, exosomes have been engineered in numerous ways for efficient delivery of active pharmaceutical ingredients to various target organs, tissues, and cells. In vivo administered exosomes are normally delivered to the liver, spleen, kidney, lung, and gastrointestinal tract and show rapid clearance from the blood circulation after systemic injection. The biodistribution and pharmacokinetics (PK) of exosomes can be modulated by engineering various factors such as cellular origin and membrane protein composition of exosomes. Recent advances accentuate the potential of targeted delivery of engineered exosomes even to the most challenging organs including the central nervous system. Major breakthroughs have been made related to various imaging techniques for monitoring in vivo biodistribution and PK of exosomes, as well as exosomal surface engineering technologies for inducing targetability. For inducing targeted delivery, therapeutic exosomes can be engineered to express various targeting moieties via direct modification methods such as chemically modifying exosomal surfaces with covalent/non-covalent bonds, or via indirect modification methods by genetically engineering exosome-producing cells. In this review, we describe the current knowledge of biodistribution and PK of exosomes, factors determining the targetability and organotropism of exosomes, and imaging technologies to monitor in vivo administered exosomes. In addition, we highlight recent advances in strategies for inducing targeted delivery of exosomes to specific organs and cells.


Assuntos
Exossomos , Transporte Biológico , Comunicação Celular , Sistemas de Liberação de Medicamentos , Distribuição Tecidual
17.
Kidney Int ; 100(3): 570-584, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34051264

RESUMO

Ischemia-reperfusion injury is a major cause of acute kidney injury. Recent studies on the pathophysiology of ischemia-reperfusion-induced acute kidney injury showed that immunologic responses significantly affect kidney ischemia-reperfusion injury and repair. Nuclear factor (NF)-ĸB signaling, which controls cytokine production and cell survival, is significantly involved in ischemia-reperfusion-induced acute kidney injury, and its inhibition can ameliorate ischemic acute kidney injury. Using EXPLOR, a novel, optogenetically engineered exosome technology, we successfully delivered the exosomal super-repressor inhibitor of NF-ĸB (Exo-srIĸB) into B6 wild type mice before/after kidney ischemia-reperfusion surgery, and compared outcomes with those of a control exosome (Exo-Naïve)-injected group. Exo-srIĸB treatment resulted in lower levels of serum blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin in post-ischemic mice than in the Exo-Naïve treatment group. Systemic delivery of Exo-srIĸB decreased NF-ĸB activity in post-ischemic kidneys and reduced apoptosis. Post-ischemic kidneys showed decreased gene expression of pro-inflammatory cytokines and adhesion molecules with Exo-srIĸB treatment as compared with the control. Intravital imaging confirmed the uptake of exosomes in neutrophils and macrophages. Exo-srIĸB treatment also significantly affected post-ischemic kidney immune cell populations, lowering neutrophil, monocyte/macrophage, and T cell frequencies than those in the control. Thus, modulation of NF-ĸB signaling through exosomal delivery can be used as a novel therapeutic method for ischemia-reperfusion-induced acute kidney injury.


Assuntos
Injúria Renal Aguda , Exossomos , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Animais , Rim , Camundongos , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa , Traumatismo por Reperfusão/prevenção & controle
18.
Kidney Res Clin Pract ; 40(2): 194-207, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33866768

RESUMO

Extracellular vesicles (EVs), such as exosomes and microvesicles, are cell-derived lipid bilayer membrane particles, which deliver information from host cells to recipient cells. EVs are involved in various biological processes including the modulation of the immune response, cell-to-cell communications, thrombosis, and tissue regeneration. Different types of kidney cells are known to release EVs under physiologic as well as pathologic conditions, and recent studies have found that EVs have a pathophysiologic role in different renal diseases. Given the recent advancement in EV isolation and analysis techniques, many studies have shown the diagnostic and therapeutic potential of EVs in various renal diseases, such as acute kidney injury, polycystic kidney disease, chronic kidney disease, kidney transplantation, and renal cell carcinoma. This review updates recent clinical and experimental findings on the role of EVs in renal diseases and highlights the potential clinical applicability of EVs as novel diagnostics and therapeutics.

19.
Pharmaceutics ; 13(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809966

RESUMO

Exosomes have attracted considerable attention as drug delivery vehicles because their biological properties can be utilized for selective delivery of therapeutic cargoes to disease sites. In this context, analysis of the in vivo behaviors of exosomes in a diseased state is required to maximize their therapeutic potential as drug delivery vehicles. In this study, we investigated biodistribution and pharmacokinetics of HEK293T cell-derived exosomes and PEGylated liposomes, their synthetic counterparts, into healthy and sepsis mice. We found that biodistribution and pharmacokinetics of exosomes were significantly affected by pathophysiological conditions of sepsis compared to those of liposomes. In the sepsis mice, a substantial number of exosomes were found in the lung after intravenous injection, and their prolonged blood residence was observed due to the liver dysfunction. However, liposomes did not show such sepsis-specific effects significantly. These results demonstrate that exosome-based therapeutics can be developed to manage sepsis and septic shock by virtue of their sepsis-specific in vivo behaviors.

20.
Sci Adv ; 7(4)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523942

RESUMO

Accumulation of immune cells and activation of the pro-inflammatory transcription factor NF-κB in feto-maternal uterine tissues is a key feature of preterm birth (PTB) pathophysiology. Reduction of the fetal inflammatory response and NF-κB activation are key strategies to minimize infection-associated PTB. Therefore, we engineered extracellular vesicles (exosomes) to contain an NF-κB inhibitor, termed super-repressor (SR) IκBα. Treatment with SR exosomes (1 × 1010 per intraperitoneal injection) after lipopolysaccharide (LPS) challenge on gestation day 15 (E15) prolonged gestation by over 24 hours (PTB ≤ E18.5) and reduced maternal inflammation (n ≥ 4). Furthermore, using a transgenic model in which fetal tissues express the red fluorescent protein tdTomato while maternal tissues do not, we report that LPS-induced PTB in mice is associated with influx of fetal innate immune cells, not maternal, into feto-maternal uterine tissues. SR packaged in exosomes provides a stable and specific intervention for reducing the inflammatory response associated with PTB.


Assuntos
Lipopolissacarídeos , Nascimento Prematuro , Animais , Modelos Animais de Doenças , Feminino , Feto , Humanos , Recém-Nascido , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Camundongos , NF-kappa B/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...