Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 624(7991): 289-294, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871614

RESUMO

Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts1-3. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses4,5. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.

2.
ACS Nano ; 15(9): 14756-14765, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583468

RESUMO

Structural optimization of microwire arrays is important for the successful demonstration of the practical feasibility of radial junction crystalline silicon (c-Si) solar cells. In this study, we investigated an optimized design of tapered microwire (TMW) arrays to maximize the light absorption of c-Si solar cells, while minimizing the surface recombination, for simultaneously improving the open-circuit voltage and short-circuit current density (Jsc). Finite-difference time-domain simulations confirmed that controlling the spacing between the TMWs at the nanometer scale is more effective for increasing the light absorption than increasing the TMW length. The photogenerated current of a c-Si TMW array with a 200 nm spacing was calculated to be 42.90 mA/cm2, which is close to the theoretical limit of 43.37 mA/cm2 in the 300-1100 nm wavelength range. To experimentally demonstrate the TMW arrays with a nanometer-scale spacing of 200 nm, which cannot be realized by conventional photolithography, we utilized a soft lithography method based on polystyrene beads for patterning a c-Si wafer. The solar cells based on optimized TMW arrays exhibited a Jsc of 42.5 mA/cm2 and power conversion efficiency of 20.5%, which exceed those of the previously reported microwire-based radial junction solar cells.

3.
Nano Lett ; 21(16): 6998-7004, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34339204

RESUMO

Solar-driven reactive oxygen species (ROS) generation is an attractive disinfection technique for cell death and water purification. However, most photocatalysts require high stability in the water environment and the production of ROS with a sufficient amount and diffusion length to damage pathogens. Here, a ROS generation system was developed consisting of tapered crystalline silicon microwires coated with anatase titanium dioxide for a conformal junction. The system effectively absorbed >95% of sunlight over 300-1100 nm, resulting in effective ROS generation. The system was designed to produce various ROS species, but a logistic regression analysis with cellular survival data revealed that the diffusion length of the ROS is ∼9 µm, implying that the most dominant species causing cell damage is H2O2. Surprisingly, a quantitative analysis showed that only 15 min of light irradiation on the system would catalyze a local bactericidal effect comparable to the conventional germicidal level of H2O2 (∼3 mM).


Assuntos
Peróxido de Hidrogênio , Luz Solar , Morte Celular , Espécies Reativas de Oxigênio , Titânio
4.
ACS Appl Mater Interfaces ; 9(25): 21276-21282, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28597663

RESUMO

We designed and fabricated a random-size inverted-pyramid-structured polydimethylsiloxane (RSIPS-PDMS) sticker to enhance the light absorption of solar cells and thus increase their efficiency. The fabricated sticker was laminated onto bare glass and crystalline silicon (c-Si) surfaces; consequently, low solar-weighted reflectance values were obtained for these surfaces (6.88 and 17.2%, respectively). In addition, we found that incident light was refracted at the PDMS-air interface of each RSIPS, which redirected the incident power and significantly increased the optical path length in the RSIPS-PDMS sticker which was 14.7% greater than that in a flat-PDMS sticker. Moreover, we investigated power reflection and propagation through the RSIPS-PDMS sticker using a finite-difference time-domain method. By attaching an RSIPS-PDMS sticker onto both an organic solar cell (OSC) based on a glass substrate and a c-Si solar cell, the power conversion efficiency of the OSC and the c-Si solar cell were increased from 8.57 to 8.94% and from 16.2 to 17.9%, respectively. Thus, the RSIPS-PDMS sticker is expected to be universally applicable to the surfaces of solar cells to enhance their light absorption.

5.
ACS Nano ; 11(6): 6218-6224, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28531350

RESUMO

We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO2 electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm2 hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm2. This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 µm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.

6.
Nanoscale ; 8(30): 14473-9, 2016 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-27405387

RESUMO

We developed a unique nano- and microwire hybrid structure by selectively modifying only the tops of microwires using metal-assisted chemical etching. The proposed nano/micro hybrid structure not only minimizes surface recombination but also absorbs 97% of incident light under AM 1.5G illumination, demonstrating outstanding light absorption compared to that of planar (59%) and microwire arrays (85%). The proposed hybrid solar cells with an area of 1 cm(2) exhibit power conversion efficiencies (Eff) of up to 17.6% under AM 1.5G illumination. In particular, the solar cells show a high short-circuit current density (Jsc) of 39.5 mA cm(-2) because of the high light-absorbing characteristics of the nanostructures. This corresponds to an approximately 61.5% and 16.5% increase in efficiency compared to that of a planar silicon solar cell (Eff = 10.9%) and a microwire solar cell (Eff = 15.1%), respectively. Therefore, we expect the proposed hybrid structure to become a foundational technology for the development of highly efficient radial junction solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...