Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 434(18): 167665, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35659535

RESUMO

Recent advances in interrogating RNA folding dynamics have shown the classical model of RNA folding to be incomplete. Here, we pose three prominent questions for the field that are at the forefront of our understanding of the importance of RNA folding dynamics for RNA function. The first centers on the most appropriate biophysical framework to describe changes to the RNA folding energy landscape that a growing RNA chain encounters during transcriptional elongation. The second focuses on the potential ubiquity of strand displacement - a process by which RNA can rapidly change conformations - and how this process may be generally present in broad classes of seemingly different RNAs. The third raises questions about the potential importance and roles of cellular protein factors in RNA conformational switching. Answers to these questions will greatly improve our fundamental knowledge of RNA folding and function, drive biotechnological advances that utilize engineered RNAs, and potentially point to new areas of biology yet to be discovered.


Assuntos
Dobramento de RNA , RNA , Cinética
2.
Proc Natl Acad Sci U S A ; 119(10): e2119529119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238631

RESUMO

SignificanceUnderstanding and treating neurological disorders are global priorities. Some of these diseases are engendered by mutations that cause defects in the cellular synthesis of transfer RNAs (tRNAs), which function as adapter molecules that translate messenger RNAs into proteins. During tRNA biogenesis, ribonuclease P catalyzes removal of the transcribed sequence upstream of the mature tRNA. Here, we focus on a cytoplasmic tRNAArgUCU that is expressed specifically in neurons and, when harboring a particular point mutation, contributes to neurodegeneration in mice. Our results suggest that this mutation favors stable alternative structures that are not cleaved by mouse ribonuclease P and motivate a paradigm that may help to understand the molecular basis for disease-associated mutations in other tRNAs.


Assuntos
Homeostase , Neurônios/metabolismo , Conformação de Ácido Nucleico , RNA de Transferência/metabolismo , Animais , Pareamento de Bases , Córtex Cerebral/enzimologia , Magnésio/metabolismo , Camundongos , Modelos Moleculares , Mutação Puntual , Processamento de Proteína Pós-Traducional , RNA de Transferência/química , RNA de Transferência/genética , Ribonuclease P/isolamento & purificação , Ribonuclease P/metabolismo , Especificidade por Substrato
3.
RNA ; 23(10): 1569-1581, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28739676

RESUMO

RNA thermometers regulate expression of some genes involved in virulence of pathogenic bacteria such as Yersinia, Neisseria, and Salmonella They often function through temperature-dependent conformational changes that alter accessibility of the ribosome-binding site. The 5'-untranslated region (UTR) of the htrA mRNA from Salmonella enterica contains a very short RNA thermometer. We have systematically characterized the structure and dynamics of this thermometer at single-nucleotide resolution using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) assays. Our results confirm that the htrA thermometer adopts the predicted hairpin conformation at low temperatures, with conformational change occurring over a physiological temperature regime. Detailed SHAPE melting curves for individual nucleotides suggest that the thermometer unfolds in a cooperative fashion, with nucleotides from both upper and lower portions of the stem gaining flexibility at a common transition temperature. Intriguingly, analysis of an extended htrA 5' UTR sequence revealed not only the presence of the RNA thermometer, but also an additional, stable upstream structure. We generated and analyzed point mutants of the htrA thermometer, revealing elements that modulate its stability, allowing the hairpin to melt under the slightly elevated temperatures experienced during the infection of a warm-blooded host. This work sheds light on structure-function relationships in htrA and related thermometers, and it also illustrates the utility of SHAPE assays for detailed study of RNA thermometer systems.


Assuntos
RNA Bacteriano/química , Salmonella enterica/genética , Regiões 5' não Traduzidas , Proteínas de Bactérias/genética , Bioquímica/métodos , Mutação , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA