Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 2083, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048684

RESUMO

The original version of this Article contained an error in the Data Availability section, which incorrectly read 'The data that support the findings of this study are available from the corresponding authors upon request.' The correct version replaces this sentence with 'The research data underpinning this publication can be accessed at https://doi.org/10.17630/21d12144-58ef-4f82-acd0-ba3c9a44ed72'. This has been corrected in both the PDF and HTML versions of the Article.

2.
Nat Commun ; 10(1): 1471, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931928

RESUMO

Nanoparticles formed on oxide surfaces are of key importance in many fields such as catalysis and renewable energy. Here, we control B-site exsolution via lattice strain to achieve a high degree of exsolution of nanoparticles in perovskite thin films: more than 1100 particles µm-2 with a particle size as small as ~5 nm can be achieved via strain control. Compressive-strained films show a larger number of exsolved particles as compared with tensile-strained films. Moreover, the strain-enhanced in situ growth of nanoparticles offers high thermal stability and coking resistance, a low reduction temperature (550 °C), rapid release of particles, and wide tunability. The mechanism of lattice strain-enhanced exsolution is illuminated by thermodynamic and kinetic aspects, emphasizing the unique role of the misfit-strain relaxation energy. This study provides critical insights not only into the design of new forms of nanostructures but also to applications ranging from catalysis, energy conversion/storage, nano-composites, nano-magnetism, to nano-optics.

3.
J Am Chem Soc ; 141(18): 7509-7517, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30998333

RESUMO

Nucleation of nanoparticles using the exsolution phenomenon is a promising pathway to design durable and active materials for catalysis and renewable energy. Here, we focus on the impact of surface orientation of the host lattice on the nucleation dynamics to resolve questions with regards to "preferential nucleation sites". For this, we carried out a systematic model study on three differently oriented perovskite thin films. Remarkably, in contrast to the previous bulk powder-based study suggesting that the (110)-surface is a preferred plane for exsolution, we identify that other planes such as (001)- and (111)-facets also reveal vigorous exsolution. Moreover, particle size and surface coverage vary significantly depending on the surface orientation. Exsolution of (111)-oriented film produces the largest number of particles, the smallest particle size, the deepest embedment, and the smallest and most uniform interparticle distance among the oriented films. Based on classic nucleation theory, we elucidate that the differences in interfacial energies as a function of substrate orientation play a crucial role in controlling the distinct morphology and nucleation behavior of exsolved nanoparticles. Our finding suggests new design principles for tunable solid-state catalyst or nanoscale metal decoration.

4.
Sci Rep ; 6: 22443, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26928921

RESUMO

Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm(-2) at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...