Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 21(7): 4085-4088, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715750

RESUMO

(PPh3)Mo(CO)5 and (PPh3)2Mo(CO)4 were synthesized by the reaction of molybdenum hexacar-bonyl with triphenylphosphine and applied as precursors to hydrocracking of vacuum residue under high-pressure and high-temperature conditions. (PPh3)2Mo(CO)4 could also be synthesized by the reaction of (PPh3)Mo(CO)5 with triphenyl phosphine. A commercial precursor (Mo-octoate) for hydrocracking of vacuum residue was used for comparison. The thermal decomposition behavior of (PPh3)Mo(CO)5, (PPh3)2Mo(CO)4, and Mo-octoate was also examined by the thermogravimetric analysis. The TGA curve of (PPh3)Mo(CO)5 and (PPh3)2Mo(CO)4 showed a similar weight-loss pattern. (PPh3)Mo(CO)5 and (PPh3)2Mo(CO)4 were decomposed into Mo metal and ligands rapidly in the range of 140 °C~270 °C. There were no ligands bound to a metal center of (PPh3)Mo(CO)5 and (PPh3)2Mo(CO)4 at the reaction temperature (430 °C) of hydrocracking. The amount of coke formed after hydrocracking over (PPh3)Mo(CO)5 and (PPh3)2Mo(CO)4 was 2.3% and 0.5%, respectively. Upgrading the qualities of heavy oils is an important issue in the energy industry. It is not easy to achieve the complete conversion of vacuum residue due to coke forming during hydrocracking of vacuum residue. This study showed that (PPh3)2Mo(CO)4 was considerably effective in reducing coke formation.


Assuntos
Molibdênio , Compostos Organofosforados , Ligantes , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...