Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 25(3): 448-453, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30643289

RESUMO

There has been a striking generational increase in life-threatening food allergies in Westernized societies1,2. One hypothesis to explain this rising prevalence is that twenty-first century lifestyle practices, including misuse of antibiotics, dietary changes, and higher rates of Caesarean birth and formula feeding have altered intestinal bacterial communities; early-life alterations may be particularly detrimental3,4. To better understand how commensal bacteria regulate food allergy in humans, we colonized germ-free mice with feces from healthy or cow's milk allergic (CMA) infants5. We found that germ-free mice colonized with bacteria from healthy, but not CMA, infants were protected against anaphylactic responses to a cow's milk allergen. Differences in bacterial composition separated the healthy and CMA populations in both the human donors and the colonized mice. Healthy and CMA colonized mice also exhibited unique transcriptome signatures in the ileal epithelium. Correlation of ileal bacteria with genes upregulated in the ileum of healthy or CMA colonized mice identified a clostridial species, Anaerostipes caccae, that protected against an allergic response to food. Our findings demonstrate that intestinal bacteria are critical for regulating allergic responses to dietary antigens and suggest that interventions that modulate bacterial communities may be therapeutically relevant for food allergy.


Assuntos
Anafilaxia/microbiologia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/genética , Hipersensibilidade a Leite/microbiologia , Animais , Clostridiales/genética , Feminino , Hipersensibilidade Alimentar/microbiologia , Vida Livre de Germes , Voluntários Saudáveis , Humanos , Íleo/microbiologia , Lactente , Masculino , Camundongos
2.
Chemistry ; 23(18): 4292-4297, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28102556

RESUMO

This study introduces an extremely stable attractive nanoscale emulsion fluid, in which the amphiphilic block copolymer, poly(ethylene oxide)-block-poly(ϵ-caprolactone) (PEO-b-PCL), is tightly packed with lecithin, thereby forming a mechanically robust thin-film at the oil-water interface. The molecular association of PEO-b-PCL with lecithin is critical for formation of a tighter and denser molecular assembly at the interface, which is systematically confirmed by T2 relaxation and DSC analyses. Moreover, suspension rheology studies also reflect the interdroplet attractions over a wide volume fraction range of the dispersed oil phase; this results in a percolated network of stable drops that exhibit no signs of coalescence or phase separation. This unique rheological behavior is attributed to the dipolar interaction between the phosphorylcholine groups of lecithin and the methoxy end groups of PEO-b-PCL. Finally, the nanoemulsion system significantly enhances transdermal delivery efficiency due to its favorable attraction to the skin, as well as high diffusivity of the nanoscale emulsion drops.

3.
Lab Chip ; 16(17): 3330-9, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27435631

RESUMO

The mechanical phenotype or 'mechanotype' of cells is emerging as a potential biomarker for cell types ranging from pluripotent stem cells to cancer cells. Using a microfluidic device, cell mechanotype can be rapidly analyzed by measuring the time required for cells to deform as they flow through constricted channels. While cells typically exhibit deformation timescales, or transit times, on the order of milliseconds to tens of seconds, transit times can span several orders of magnitude and vary from day to day within a population of single cells; this makes it challenging to characterize different cell samples based on transit time data. Here we investigate how variability in transit time measurements depends on both experimental factors and heterogeneity in physical properties across a population of single cells. We find that simultaneous transit events that occur across neighboring constrictions can alter transit time, but only significantly when more than 65% of channels in the parallel array are occluded. Variability in transit time measurements is also affected by the age of the device following plasma treatment, which could be attributed to changes in channel surface properties. We additionally investigate the role of variability in cell physical properties. Transit time depends on cell size; by binning transit time data for cells of similar diameters, we reduce measurement variability by 20%. To gain further insight into the effects of cell-to-cell differences in physical properties, we fabricate a panel of gel particles and oil droplets with tunable mechanical properties. We demonstrate that particles with homogeneous composition exhibit a marked reduction in transit time variability, suggesting that the width of transit time distributions reflects the degree of heterogeneity in subcellular structure and mechanical properties within a cell population. Our results also provide fundamental insight into the physical underpinnings of transit measurements: transit time depends strongly on particle elastic modulus, and weakly on viscosity and surface tension. Based on our findings, we present a comprehensive methodology for designing, analyzing, and reducing variability in transit time measurements; this should facilitate broader implementation of transit experiments for rapid mechanical phenotyping in basic research and clinical settings.


Assuntos
Leucemia Promielocítica Aguda/patologia , Análise em Microsséries/métodos , Microfluídica/métodos , Modelos Biológicos , Análise de Célula Única/instrumentação , Algoritmos , Biomarcadores , Fenômenos Biomecânicos , Forma Celular , Tamanho Celular , Módulo de Elasticidade , Desenho de Equipamento , Géis , Células HL-60 , Humanos , Cinética , Lipossomos/química , Análise em Microsséries/instrumentação , Microfluídica/instrumentação , Tamanho da Partícula , Reprodutibilidade dos Testes , Propriedades de Superfície , Tensão Superficial , Viscosidade
4.
Colloids Surf B Biointerfaces ; 146: 544-9, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27419649

RESUMO

This study introduces a new type of uniform liposome-analogous vesicle with a highly stable shell structure in which water-in-oil-in-water double emulsion drops fabricated in a capillary-based microfluidic device are used as templates. The vesicles developed in this work consist of a poly(ethylene glycol) hydrogel core surrounded by a polyurethane (PU) film between 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers. Subjecting the double emulsion templates to UV irradiation leads to the formation of a PU elastomer film between the DPPC layers. The presence of a thin PU film sandwiched between the DPPC layers is confirmed by confocal laser microscopy. The thicknesses of the PU films are measured to be approximately ∼4µm. Further study reveals the incorporation of the PU film between the DPPC layers remarkably improves the shell impermeability. Our vesicle system is expected to be useful for regulating the permeation of small molecules through lipid-based vesicular films.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Lipossomos/química , 1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , 1,2-Dipalmitoilfosfatidilcolina/química , Elastômeros/química , Microfluídica/métodos , Poliuretanos/química
5.
Soft Matter ; 12(1): 157-64, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26466557

RESUMO

Cellulose nanofibrils (CNFs) present unique opportunities for rheology modification in complex fluids. Here we systematically consider the effect of ionic and non-ionic surfactants on the rheology of dilute CNF suspensions. Neat suspensions are transparent yield-stress fluids which display strong shear thinning and power-law dependence of modulus on concentration, G' ∼ c(2.1). Surfactant addition below a critical mass concentration cc produces an increase in the gel modulus with retention of optical clarity. Larger than critical concentrations induce significant fibril aggregation leading to the loss of suspension stability and optical clarity, and to aggregate sedimentation. The critical concentration was the lowest for a cationic surfactant (DTAB), cc ≈ 0.08%, while suspension stability was retained for non-ionic surfactants (Pluronic F68, TX100) at concentrations up to 8%. The anionic surfactant SDS led to a loss of stability at cc ≈ 1.6% whereas suspension stability was not compromised by anionic SLES up to 8%. Dynamic light scattering data are consistent with a scenario in which gel formation is driven by micelle-nanofibril bridging mediated by associative interactions of ethoxylated surfactant headgroups with the cellulose fibrils. This may explain the strong difference between the properties of SDS and SLES-modified suspensions. These results have implications for the use of CNFs as a rheology modifier in surfactant-containing systems.


Assuntos
Celulose/química , Nanofibras/química , Tensoativos/química , Géis/química , Micelas , Reologia
6.
ACS Macro Lett ; 5(6): 666-670, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35614670

RESUMO

Affinity partitioning refers to the preferential dissolution of solute molecules in a particular liquid phase of an immiscible liquid-liquid mixture, such as an aqueous two-phase system (ATPS). Affinity partitioning in ATPS is widely used to achieve extraction and purification of biomolecules. However, the potential of applying it to direct the self-assembly of solutes into controlled structures has been largely overlooked. Here we introduce the affinity partitioning of polyelectrolytes in ATPS to induce their self-assembly into polyelectrolyte microcapsules. The approach is purely based on the preferential solubility of different polyelectrolytes in different aqueous phases; therefore it has wide applicability and exhibits excellent compatibility with bioactives. The release of encapsulated components can be triggered by changing the pH value or ionic strength of the surrounding environment. The proposed method represents an important advance in fabricating multifunctional materials and inspires new ways to engineer sophisticated structures with hydrophilic macromolecules.

7.
Artigo em Inglês | MEDLINE | ID: mdl-26465408

RESUMO

We investigate poly(N-isopropylacrylamide) (pNIPAM) microgels randomly copolymerized with large mol % of protonated acrylic acid (AAc), finding that above the lower critical solution temperature the presence of the acid strongly disrupts pNIPAM's collapse, leading to unexpected new behavior at high temperatures. Specifically, we see a dramatic increase in the ratio between the radius of gyration and the hydrodynamic radius above the theoretical value for homogeneous spheres, and a corresponding increase of the network length scale, which we attribute to the presence of a heterogeneous polymer distribution that forms due to frustration of pNIPAM's coil-to-globule transition by the AAc. We analyze this phenomenon using a Debye-Bueche-like scattering contribution as opposed to the Lorentzian term often used, interpreting the results in terms of mass segregation at the particle periphery.


Assuntos
Resinas Acrílicas/química , Géis/química , Temperatura , Acrilatos/química , Hidrodinâmica , Modelos Químicos , Prótons , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...