Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(6)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375043

RESUMO

Silver nanoparticles (AgNPs) were synthesized using the whole plant of Duchesnea indica (DI) which was extracted in different solvents; the antimicrobial effects of the extract were investigated in this study. The extraction of DI was performed using three different solvents: water, pure ethanol (EtOH), and pure dimethyl sulfoxide (DMSO). AgNP formation was monitored by measuring the UV-Vis spectrum of each reaction solution. After synthesis for 48 h, the AgNPs were collected and the negative surface charge and size distribution of the synthesized AgNPs were measured using dynamic light scattering (DLS). The AgNP structure was determined by high-resolution powder X-ray diffraction (XRD) and the AgNP morphology was investigated using transmission electron microscopy (TEM). AgNP antibacterial activities were evaluated against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enteritidis, and Pseudomonas aeruginosa using the disc diffusion method. Additionally, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were also determined. Biosynthesized AgNPs showed enhanced antibacterial activity against B. cereus, S. aureus, E. coli, S. enteritidis, and P. aeruginosa compared with that of pristine solvent extract. These results suggest that AgNPs synthesized from extracts of DI are promising antibacterial agents against pathogenic bacteria and can be further applied in the food industry.

2.
Foods ; 11(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36553706

RESUMO

Chitosan (CTS)/gelatin (GEL)/poly(vinyl alcohol) (PVA)-based composite films with different concentrations of Duchesnea indica extract (DIE) (6.25 and 25 mg/mL), an antimicrobial agent, were manufactured using a casting technique. Results indicated that elongation at break decreased as DIE was added at higher concentrations. Composite films showed no significant differences in thickness, tensile strength, and water vapor permeability. Scanning electron microscopy images revealed that DIE was successfully incorporated into film matrices to interact with polymers. The addition of DIE to the film inhibited the growth of S. aureus by up to 4.9 log CFU/mL. The inhibitory effect on S. aureus using DIE-incorporated coating applied to strawberries was greatest at room temperature storage for 24 h only when it was coated twice or more. The maximum inhibition in strawberries was 2.5 log CFU/g when they were coated twice and 3.2 log CFU/g when they were coated three times. The results of this study suggest that DIE could be used as a natural antimicrobial agent, and DIE-integrated CTS/GEL/PVA films or coatings have potential as a food packaging alternative for preventing foodborne pathogen contamination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...