Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1120556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936965

RESUMO

Introduction: The differential immune responses after two additional BNT162b2 (BNT) booster doses between ChAdOx1 nCoV-10 (ChAd)-primed and BNT-primed groups have not been elucidated. The aim of this study was to compare vaccine-induced humoral and cellular immune responses and evaluate breakthrough infection between the two vaccination strategies. Methods: In 221 healthy subjects (111 in the ChAd group), longitudinal immune responses were monitored at 3, 4, and 6 months after the 2nd dose and 1, 3, and 6 months after the 3rd dose. Humoral immunity was measured by two fully automated chemiluminescent immunoassays (Elecsys and Abbott) and a surrogate virus neutralization test (sVNT). Cellular immunity was assessed by two interferon-γ (IFN-γ) release assays (QuantiFERON SARS-CoV-2 and Covi-FERON). Results: After the 2nd dose of BNT vaccination, total antibody levels were higher in the ChAd group, but IgG antibody and sVNT results were higher in the BNT group. Following the 3rd dose vaccination, binding antibody titers were significantly elevated in both groups (ChAD-BNT; 15.4 to 17.8-fold, BNT-BNT; 22.2 to 24.6-fold), and the neutralizing capacity was increased by 1.3-fold in both cohorts. The ChAd-BNT group had lower omicron neutralization positivity than the BNT-BNT group (P = 0.001) at 6 months after the 3rd dose. Cellular responses to the spike antigen also showed 1.7 to 3.0-fold increases after the 3rd dose, which gradually declined to the levels equivalent to before the 3rd vaccination. The ChAd cohort tended to have higher IFN-γ level than the BNT cohort for 3-6 months after the 2nd and 3rd doses. The frequency of breakthrough infection was higher in the ChAd group (44.8%) than in the BNT group (28.1%) (P = 0.0219). Breakthrough infection induced increased humoral responses in both groups, and increase of cellular response was significant in the ChAd group. Discussion: Our study showed differential humoral and cellular immune responses between ChAd-BNT-BNT heterologous and BNT-BNT-BNT homologous vaccination cohorts. The occurrence of low antibody levels in the ChAd-primed cohort in the humoral immune response may be associated with an increased incidence of breakthrough infections. Further studies are needed on the benefits of enhanced cellular immunity in ChAd-primed cohorts.


Assuntos
Vacina BNT162 , COVID-19 , Humanos , Vacina BNT162/imunologia , Infecções Irruptivas , COVID-19/prevenção & controle , Imunidade Celular , Estudos Prospectivos , SARS-CoV-2 , Vacinação , Imunidade Humoral
2.
PLoS Negl Trop Dis ; 16(9): e0010763, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36094957

RESUMO

BACKGROUND: Whole-genome sequencing plays a critical role in the genomic epidemiology intended to improve understanding the spread of emerging viruses. Dabie bandavirus, causing severe fever with thrombocytopenia syndrome (SFTS), is a zoonotic tick-borne virus that poses a significant public health threat. We aimed to evaluate a novel amplicon-based nanopore sequencing tool to obtain whole-genome sequences of Dabie bandavirus, also known as SFTS virus (SFTSV), and investigate the molecular prevalence in wild ticks, Republic of Korea (ROK). PRINCIPAL FINDINGS: A total of 6,593 ticks were collected from Gyeonggi and Gangwon Provinces, ROK in 2019 and 2020. Quantitative polymerase chain reaction revealed the presence of SFSTV RNA in three Haemaphysalis longicornis ticks. Two SFTSV strains were isolated from H. longicornis captured from Pocheon and Cheorwon. Multiplex polymerase chain reaction-based nanopore sequencing provided nearly full-length tripartite genome sequences of SFTSV within one hour running. Phylogenetic and reassortment analyses were performed to infer evolutionary relationships among SFTSVs. Phylogenetic analysis grouped SFTSV Hl19-31-4 and Hl19-31-13 from Pocheon with sub-genotype B-1 in all segments. SFTSV Hl20-8 was found to be a genomic organization compatible with B-1 (for L segment) and B-2 (for M and S segments) sub-genotypes, indicating a natural reassortment between sub-genotypes. CONCLUSION/SIGNIFICANCE: Amplicon-based next-generation sequencing is a robust tool for whole-genome sequencing of SFTSV using the nanopore platform. The molecular prevalence and geographical distribution of SFTSV enhanced the phylogeographic map at high resolution for sophisticated prevention of emerging SFTS in endemic areas. Our findings provide important insights into the rapid whole-genome sequencing and genetic diversity for the genome-based diagnosis of SFTSV in the endemic outbreak.


Assuntos
Infecções por Bunyaviridae , Sequenciamento por Nanoporos , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Carrapatos , Animais , Infecções por Bunyaviridae/epidemiologia , Variação Genética , Reação em Cadeia da Polimerase Multiplex , Phlebovirus/genética , Filogenia , RNA , República da Coreia/epidemiologia
3.
Pathogens ; 11(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145479

RESUMO

Seoul virus (SEOV), an etiological agent for hemorrhagic fever with renal syndrome, poses a significant public health threat worldwide. This study evaluated the feasibility of a mobile Biomeme platform for facilitating rapid decision making of SEOV infection. A total of 27 Rattus norvegicus were collected from Seoul Metropolitan City and Gangwon Province in Republic of Korea (ROK), during 2016-2020. The serological and molecular prevalence of SEOV was 5/27 (18.5%) and 2/27 (7.4%), respectively. SEOV RNA was detected in multiple tissues of rodents using the Biomeme device, with differences in Ct values ranging from 0.6 to 2.1 cycles compared to a laboratory benchtop system. Using amplicon-based next-generation sequencing, whole-genome sequences of SEOV were acquired from lung tissues of Rn18-1 and Rn19-5 collected in Gangwon Province. Phylogenetic analysis showed a phylogeographical diversity of rat-borne orthohantavirus collected in Gangwon Province. We report a novel isolate of SEOV Rn19-5 from Gangwon Province. Our findings demonstrated that the Biomeme system can be applied for the molecular diagnosis of SEOV comparably to the laboratory-based platform. Whole-genome sequencing of SEOV revealed the phylogeographical diversity of orthohantavirus in the ROK. This study provides important insights into the field-deployable diagnostic assays and genetic diversity of orthohantaviruses for the rapid response to hantaviral outbreaks in the ROK.

4.
Mol Biotechnol ; 35(3): 237-41, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17652787

RESUMO

Conditions were evaluated for optimum cryopreservation of primary chicken embryo kidney (CEK) cells. The recovery of viable CEK cells was best (50.8% viability) when the concentration of dimethyl sulfoxide (DMSO) in the freezing medium was 20% (v/v). The viability of primary CEK cells was not influenced by the concentration of calf serum in the freezing medium, the duration of storage at -70 degrees C before storage in liquid nitrogen, cell concentration, or the method of addition or dilution of DMSO. Thawed cells recovered and grew in complete growth medium similarly to cells freshly isolated from kidney, and influenza viruses produced plaques in the monolayer. The cryopreservation procedures described here may facilitate maintenance of a standard stock of primary CEK cells for laboratories where preparation of primary CEK cells is not an option.


Assuntos
Criopreservação , Dimetil Sulfóxido/farmacologia , Rim/embriologia , Animais , Células Cultivadas , Embrião de Galinha , Rim/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...