Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
NeuroRehabilitation ; 54(4): 619-628, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38943406

RESUMO

BACKGROUND: Although clinical machine learning (ML) algorithms offer promising potential in forecasting optimal stroke rehabilitation outcomes, their specific capacity to ascertain favorable outcomes and identify responders to robotic-assisted gait training (RAGT) in individuals with hemiparetic stroke undergoing such intervention remains unexplored. OBJECTIVE: We aimed to determine the best predictive model based on the international classification of functioning impairment domain features (Fugl- Meyer assessment (FMA), Modified Barthel index related-gait scale (MBI), Berg balance scale (BBS)) and reveal their responsiveness to robotic assisted gait training (RAGT) in patients with subacute stroke. METHODS: Data from 187 people with subacute stroke who underwent a 12-week Walkbot RAGT intervention were obtained and analyzed. Overall, 18 potential predictors encompassed demographic characteristics and the baseline score of functional and structural features. Five predictive ML models, including decision tree, random forest, eXtreme Gradient Boosting, light gradient boosting machine, and categorical boosting, were used. RESULTS: The initial and final BBS, initial BBS, final Modified Ashworth scale, and initial MBI scores were important features, predicting functional improvements. eXtreme Gradient Boosting demonstrated superior performance compared to other models in predicting functional recovery after RAGT in patients with subacute stroke. CONCLUSION: eXtreme Gradient Boosting may be an invaluable prognostic tool, providing clinicians and caregivers with a robust framework to make precise clinical decisions regarding the identification of optimal responders and effectively pinpoint those who are most likely to derive maximum benefits from RAGT interventions.


Assuntos
Transtornos Neurológicos da Marcha , Aprendizado de Máquina , Reabilitação do Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Robótica , Exoesqueleto Energizado , Acidente Vascular Cerebral/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Adulto , Prognóstico , Avaliação de Resultados em Cuidados de Saúde , Terapia por Exercício/métodos , Marcha/fisiologia
2.
J Osteopath Med ; 124(5): 219-230, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197301

RESUMO

CONTEXT: The evidence for the efficacy of osteopathic manipulative treatment (OMT) in the management of low back pain (LBP) is considered weak by systematic reviews, because it is generally based on low-quality studies. Consequently, there is a need for more randomized controlled trials (RCTs) with a low risk of bias. OBJECTIVES: The objective of this study is to evaluate the efficacy of an OMT intervention for reducing pain and disability in patients with chronic LBP. METHODS: A single-blinded, crossover, RCT was conducted at a university-based health system. Participants were adults, 21-65 years old, with nonspecific LBP. Eligible participants (n=80) were randomized to two trial arms: an immediate OMT intervention group and a delayed OMT (waiting period) group. The intervention consisted of three to four OMT sessions over 4-6 weeks, after which the participants switched (crossed-over) groups. The primary clinical outcomes were average pain, current pain, Patient-Reported Outcomes Measurement Information System (PROMIS) 29 v1.0 pain interference and physical function, and modified Oswestry Disability Index (ODI). Secondary outcomes included the remaining PROMIS health domains and the Fear Avoidance Beliefs Questionnaire (FABQ). These measures were taken at baseline (T0), after one OMT session (T1), at the crossover point (T2), and at the end of the trial (T3). Due to the carryover effects of OMT intervention, only the outcomes obtained prior to T2 were evaluated utilizing mixed-effects models and after adjusting for baseline values. RESULTS: Totals of 35 and 36 participants with chronic LBP were available for the analysis at T1 in the immediate OMT and waiting period groups, respectively, whereas 31 and 33 participants were available for the analysis at T2 in the immediate OMT and waiting period groups, respectively. After one session of OMT (T1), the analysis showed a significant reduction in the secondary outcomes of sleep disturbance and anxiety compared to the waiting period group. Following the entire intervention period (T2), the immediate OMT group demonstrated a significantly better average pain outcome. The effect size was a 0.8 standard deviation (SD), rendering the reduction in pain clinically significant. Further, the improvement in anxiety remained statistically significant. No study-related serious adverse events (AEs) were reported. CONCLUSIONS: OMT intervention is safe and effective in reducing pain along with improving sleep and anxiety profiles in patients with chronic LBP.

3.
J Dent ; 141: 104821, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38145804

RESUMO

OBJECTIVES: In this study, we aimed to integrate tooth number recognition and caries detection in full intraoral photographic images using a cascade region-based deep convolutional neural network (R-CNN) model to facilitate the practical application of artificial intelligence (AI)-driven automatic caries detection in clinical practice. METHODS: Our dataset comprised 24,578 images, encompassing 4787 upper occlusal, 4347 lower occlusal, 5230 right lateral, 5010 left lateral, and 5204 frontal views. In each intraoral image, tooth numbers and, when present, dental caries, including their location and stage, were annotated using bounding boxes. A cascade R-CNN model was used for dental caries detection and tooth number recognition within intraoral images. RESULTS: For tooth number recognition, the model achieved an average mean average precision (mAP) score of 0.880. In the task of dental caries detection, the model's average mAP score was 0.769, with individual scores spanning from 0.695 to 0.893. CONCLUSIONS: The primary objective of integrating tooth number recognition and caries detection within full intraoral photographic images has been achieved by our deep learning model. The model's training on comprehensive intraoral datasets has demonstrated its potential for seamless clinical application. CLINICAL SIGNIFICANCE: This research holds clinical significance by achieving AI-driven automatic integration of tooth number recognition and caries detection in full intraoral images where multiple teeth are visible. It has the potential to promote the practical application of AI in real-life and clinical settings.


Assuntos
Cárie Dentária , Dente , Humanos , Cárie Dentária/diagnóstico por imagem , Inteligência Artificial , Redes Neurais de Computação
4.
Comput Methods Programs Biomed ; 233: 107465, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933315

RESUMO

BACKGROUND AND OBJECTIVE: MRI is considered the gold standard for diagnosing anterior disc displacement (ADD), the most common temporomandibular joint (TMJ) disorder. However, even highly trained clinicians find it difficult to integrate the dynamic nature of MRI with the complicated anatomical features of the TMJ. As the first validated study for MRI-based automatic TMJ ADD diagnosis, we propose a clinical decision support engine that diagnoses TMJ ADD using MR images and provides heat maps as the visualized rationale of diagnostic predictions using explainable artificial intelligence. METHODS: The engine builds on two deep learning models. The first deep learning model detects a region of interest (ROI) containing three TMJ components (i.e., temporal bone, disc, and condyle) in the entire sagittal MR image. The second deep learning model classifies TMJ ADD into three classes (i.e., normal, ADD without reduction, and ADD with reduction) within the detected ROI. In this retrospective study, the models were developed and tested on the dataset acquired between April 2005 to April 2020. The additional independent dataset acquired at a different hospital between January 2016 to February 2019 was used for the external test of the classification model. Detection performance was assessed by mean average precision (mAP). Classification performance was assessed by the area under the receiver operating characteristic (AUROC), sensitivity, specificity, and Youden's index. 95% confidence intervals were calculated via non-parametric bootstrap to assess the statistical significance of model performances. RESULTS: The ROI detection model achieved mAP of 0.819 at 0.75 intersection over union (IoU) thresholds in the internal test. In internal and external tests, the ADD classification model achieved AUROC values of 0.985 and 0.960, sensitivities of 0.950 and 0.926, and specificities of 0.919 and 0.892, respectively. CONCLUSIONS: The proposed explainable deep learning-based engine provides clinicians with the predictive result and its visualized rationale. The clinicians can make the final diagnosis by integrating primary diagnostic prediction obtained from the proposed engine with the patient's clinical examination findings.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Aprendizado Profundo , Transtornos da Articulação Temporomandibular , Humanos , Disco da Articulação Temporomandibular , Estudos Retrospectivos , Inteligência Artificial , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Transtornos da Articulação Temporomandibular/complicações , Imageamento por Ressonância Magnética/métodos , Articulação Temporomandibular/diagnóstico por imagem
5.
Microsyst Nanoeng ; 9: 28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949735

RESUMO

This study presents a new technology that can detect and discriminate individual chemical vapors to determine the chemical vapor composition of mixed chemical composition in situ based on a multiplexed DNA-functionalized graphene (MDFG) nanoelectrode without the need to condense the original vapor or target dilution. To the best of our knowledge, our artificial intelligence (AI)-operated arrayed electrodes were capable of identifying the compositions of mixed chemical gases with a mixed ratio in the early stage. This innovative technology comprised an optimized combination of nanodeposited arrayed electrodes and artificial intelligence techniques with advanced sensing capabilities that could operate within biological limits, resulting in the verification of mixed vapor chemical components. Highly selective sensors that are tolerant to high humidity levels provide a target for "breath chemovapor fingerprinting" for the early diagnosis of diseases. The feature selection analysis achieved recognition rates of 99% and above under low-humidity conditions and 98% and above under humid conditions for mixed chemical compositions. The 1D convolutional neural network analysis performed better, discriminating the compositional state of chemical vapor under low- and high-humidity conditions almost perfectly. This study provides a basis for the use of a multiplexed DNA-functionalized graphene gas sensor array and artificial intelligence-based discrimination of chemical vapor compositions in breath analysis applications.

6.
J Med Internet Res ; 25: e40179, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36482780

RESUMO

BACKGROUND: Osteoporosis is one of the diseases that requires early screening and detection for its management. Common clinical tools and machine-learning (ML) models for screening osteoporosis have been developed, but they show limitations such as low accuracy. Moreover, these methods are confined to limited risk factors and lack individualized explanation. OBJECTIVE: The aim of this study was to develop an interpretable deep-learning (DL) model for osteoporosis risk screening with clinical features. Clinical interpretation with individual explanations of feature contributions is provided using an explainable artificial intelligence (XAI) technique. METHODS: We used two separate data sets: the National Health and Nutrition Examination Survey data sets from the United States (NHANES) and South Korea (KNHANES) with 8274 and 8680 respondents, respectively. The study population was classified according to the T-score of bone mineral density at the femoral neck or total femur. A DL model for osteoporosis diagnosis was trained on the data sets and significant risk factors were investigated with local interpretable model-agnostic explanations (LIME). The performance of the DL model was compared with that of ML models and conventional clinical tools. Additionally, contribution ranking of risk factors and individualized explanation of feature contribution were examined. RESULTS: Our DL model showed area under the curve (AUC) values of 0.851 (95% CI 0.844-0.858) and 0.922 (95% CI 0.916-0.928) for the femoral neck and total femur bone mineral density, respectively, using the NHANES data set. The corresponding AUC values for the KNHANES data set were 0.827 (95% CI 0.821-0.833) and 0.912 (95% CI 0.898-0.927), respectively. Through the LIME method, significant features were induced, and each feature's integrated contribution and interpretation for individual risk were determined. CONCLUSIONS: The developed DL model significantly outperforms conventional ML models and clinical tools. Our XAI model produces high-ranked features along with the integrated contributions of each feature, which facilitates the interpretation of individual risk. In summary, our interpretable model for osteoporosis risk screening outperformed state-of-the-art methods.


Assuntos
Aprendizado Profundo , Osteoporose , Humanos , Inteligência Artificial , Inquéritos Nutricionais , Osteoporose/diagnóstico
7.
Artigo em Inglês | MEDLINE | ID: mdl-35925859

RESUMO

This paper presents a novel approach for designing a robotic orthosis controller considering physical human-robot interaction (pHRI). Computer simulation for this human-robot system can be advantageous in terms of time and cost due to the laborious nature of designing a robot controller that effectively assists humans with the appropriate magnitude and phase. Therefore, we propose a two-stage policy training framework based on deep reinforcement learning (deep RL) to design a robot controller using human-robot dynamic simulation. In Stage 1, the optimal policy of generating human gaits is obtained from deep RL-based imitation learning on a healthy subject model using the musculoskeletal simulation in OpenSim-RL. In Stage 2, human models in which the right soleus muscle is weakened to a certain severity are created by modifying the human model obtained from Stage 1. A robotic orthosis is then attached to the right ankle of these models. The orthosis policy that assists walking with optimal torque is then trained on these models. Here, the elastic foundation model is used to predict the pHRI in the coupling part between the human and robotic orthosis. Comparative analysis of kinematic and kinetic simulation results with the experimental data shows that the derived human musculoskeletal model imitates a human walking. It also shows that the robotic orthosis policy obtained from two-stage policy training can assist the weakened soleus muscle. The proposed approach was validated by applying the learned policy to ankle orthosis, conducting a gait experiment, and comparing it with the simulation results.


Assuntos
Órtoses do Pé , Robótica , Tornozelo/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Marcha/fisiologia , Humanos , Políticas , Caminhada
8.
BMC Urol ; 22(1): 80, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668401

RESUMO

BACKGROUND: To develop a warning system that can prevent or minimize laser exposure resulting in kidney and ureter damage during retrograde intrarenal surgery (RIRS) for urolithiasis. Our study builds on the hypothesis that shock waves of different degrees are delivered to the hand of the surgeon depending on whether the laser hits the stone or tissue. METHODS: A surgical environment was simulated for RIRS by filling the body of a raw whole chicken with water and stones from the human body. We developed an acceleration measurement system that recorded the power signal data for a number of hours, yielding distinguishable characteristics among three different states (idle state, stones, and tissue-laser interface) by conducting fast Fourier transform (FFT) analysis. A discrete wavelet transform (DWT) was used for feature extraction, and a random forest classification algorithm was applied to classify the current state of the laser-tissue interface. RESULTS: The result of the FFT showed that the magnitude spectrum is different within the frequency range of < 2500 Hz, indicating that the different states are distinguishable. Each recorded signal was cut in only 0.5-s increments and transformed using the DWT. The transformed data were entered into a random forest classifier to train the model. The test result was only measured with the dataset that was isolated from the training dataset. The maximum average test accuracy was > 95%. The procedure was repeated with random signal dummy data, resulting in an average accuracy of 33.33% and proving that the proposed method caused no bias. CONCLUSIONS: Our monitoring system receives the shockwave signals generated from the RIRS urolithiasis treatment procedure and generates the laser irradiance status by rapidly recognizing (in 0.5 s) the current laser exposure state with high accuracy (95%). We postulate that this can significantly minimize surgeon error during RIRS.


Assuntos
Cálculos Renais , Ureter , Urolitíase , Humanos , Cálculos Renais/cirurgia , Aprendizado de Máquina , Resultado do Tratamento , Urolitíase/cirurgia
9.
PM R ; 14(12): 1417-1429, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719122

RESUMO

BACKGROUND: Neck pain (NP) affects up to 70% of individuals at some point in their lives. Systematic reviews indicate that manual treatments can be moderately effective in the management of chronic, nonspecific NP. However, there is a paucity of studies specifically evaluating the efficacy of osteopathic manipulative treatment (OMT). OBJECTIVE: To evaluate the efficacy of OMT in reducing pain and disability in patients with chronic NP. DESIGN: Single-blinded, cross-over, randomized-controlled trial. SETTING: University-based, osteopathic manipulative medicine outpatient clinic. PARTICIPANTS: Ninety-seven participants, 21 to 65 years of age, with chronic, nonspecific NP. INTERVENTIONS: Participants were randomized to two trial arms: immediate OMT intervention or waiting period first. The intervention consisted of three to four OMT sessions over 4 to 6 weeks, after which the participants switched groups. MAIN OUTCOME MEASURES: Primary outcome measures were pain intensity (average and current) on the numerical rating scale and Neck Disability Index. Secondary outcomes included Patient-Reported Outcomes Measurement Information System-29 (PROMIS-29) health domains and Fear Avoidance Beliefs Questionnaire. Outcomes obtained prior to the cross-over allocation were evaluated using general linear models and after adjusting for baseline values. RESULTS: A total of 38 and 37 participants were available for the analysis in the OMT and waiting period groups, respectively. The results showed significantly better primary outcomes in the immediate OMT group for reductions in average pain (-1.02, 95% confidence interval [CI] -1.72, -0.32; p = .005), current pain (-1.02, 95% CI -1.75, -0.30; p = .006), disability (-5.30%, 95% CI -9.2%, -1.3%; p = .010) and improved secondary outcomes (PROMIS) related to sleep (-3.25, 95% CI -6.95, -1.54; p = .003), fatigue (-3.26, 95% CI -6.04, -0.48; p = .022), and depression (-2.59, 95% CI -4.73, -0.45; p = .018). The effect sizes were in the clinically meaningful range between 0.5 and 1 standard deviation. No study-related serious adverse events were reported. CONCLUSIONS: OMT is relatively safe and effective in reducing pain and disability along with improving sleep, fatigue, and depression in patients with chronic NP immediately following treatment delivered over approximately 4 to 6 weeks.


Assuntos
Dor Crônica , Dor Lombar , Osteopatia , Humanos , Osteopatia/métodos , Cervicalgia/terapia , Dor Lombar/terapia , Resultado do Tratamento , Dor Crônica/terapia , Fadiga
10.
Comput Methods Programs Biomed ; 208: 106243, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34218170

RESUMO

BACKGROUND: Obstructive sleep apnea syndrome (OSAS) is being observed in an increasing number of cases. It can be diagnosed using several methods such as polysomnography. OBJECTIVES: To overcome the challenges of time and cost faced by conventional diagnostic methods, this paper proposes computational fluid dynamics (CFD) and machine-learning approaches that are derived from the upper-airway morphology with automatic segmentation using deep learning. METHOD: We adopted a 3D UNet deep-learning model to perform medical image segmentation. 3D UNet prevents the feature-extraction loss that may occur by concatenating layers and extracts the anteroposterior coordination and width of the airway morphology. To create flow characteristics of the upper airway training data, we analyzed the changes in flow characteristics according to the upper-airway morphology using CFD. A multivariate Gaussian process regression (MVGPR) model was used to train the flow characteristic values. The trained MVGPR enables the prompt prediction of the aerodynamic features of the upper airway without simulation. Unlike conventional regression methods, MVGPR can be trained by considering the correlation between the flow characteristics. As a diagnostic step, a support vector machine (SVM) with predicted aerodynamic and biometric features was used in this study to classify patients as healthy or suffering from moderate OSAS. SVM is beneficial as it is easy to learn even with a small dataset, and it can diagnose various flow characteristics as factors while enhancing the feature via the kernel function. As the patient dataset is small, the Monte Carlo cross-validation was used to validate the trained model. Furthermore, to overcome the imbalanced data problem, the oversampling method was applied. RESULT: The segmented upper-airway results of the high-resolution and low-resolution models present overall average dice coefficients of 0.76±0.041 and 0.74±0.052, respectively. Furthermore, the classification accuracy, sensitivity, specificity, and F1-score of the diagnosis algorithm were 81.5%, 89.3%, 86.2%, and 87.6%, respectively. CONCLUSION: The convenience and accuracy of sleep apnea diagnosis are improved using deep learning and machine learning. Further, the proposed method can aid clinicians in making appropriate decisions to evaluate the possible applications of OSAS.


Assuntos
Hidrodinâmica , Apneia Obstrutiva do Sono , Inteligência Artificial , Humanos , Polissonografia , Apneia Obstrutiva do Sono/diagnóstico por imagem , Traqueia
11.
J Biomech ; 125: 110541, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34198020

RESUMO

Challenging trunk neuromuscular control maximally using a seated balancing task is useful for unmasking impairments that may go unnoticed with traditional postural sway measures and appears to be safe to assess in healthy individuals. This study investigates whether the stability threshold, reflecting the upper limits in trunk neuromuscular control, is sensitive to pain and disability and is safe to assess in low back pain (LBP) patients. Seventy-nine subjects with non-specific LBP balanced on a robotic seat while rotational stiffness was gradually reduced. The critical rotational stiffness, KCrit, that marked the transition between stable and unstable balance was used to quantify the individual's stability threshold. The effects of current pain, 7-day average pain, and disability on KCrit were assessed, while controlling for age, sex, height, and weight. Adverse events (AEs) recorded at the end of the testing session were used to assess safety. Current pain and 7-day average pain were strongly associated with KCrit (current pain p < 0.001, 7-day pain p = 0.023), reflecting that people experiencing more pain have poorer trunk neuromuscular control. There was no evidence that disability was associated with KCrit, although the limited range in disability scores in subjects may have impacted the analysis. AEs were reported in 13 out of 79 total sessions (AE Severity: 12 mild, 1 moderate; AE Relatedness: 1 possibly, 11 probably, 1 definitely-related to the study). Stability threshold is sensitive to pain and appears safe to assess in people with LBP, suggesting it could be useful for identifying trunk neuromuscular impairments and guiding rehabilitation.


Assuntos
Dor Lombar , Robótica , Humanos , Equilíbrio Postural , Tronco
12.
Comput Biol Med ; 133: 104394, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34015599

RESUMO

Computational Growth and Remodeling (G&R) models have been widely used to capture the pathological development of arterial diseases and have shown promise for aiding clinical diagnosis, prognosis prediction, and staging classification. However, due to the high complexity of the arterial adaptation mechanism, high-fidelity arterial G&R simulation usually takes hours or even days, which hinders its application in clinical practice. To remedy this problem, we develop a computationally efficient arterial G&R simulation framework that comprehensively combines the physics-based G&R simulations and data-driven machine learning approaches. The proposed framework greatly enhances the computational efficiency of arterial G&R simulations, thereby enabling more time-consuming arterial applications, including personalized parameter estimation and arterial disease progression prediction. In particular, we achieve significant computational cost reduction mainly through two methods: (1) constructing a Multifidelity Surrogate (MFS) to approximate multifidelity G&R simulations by using a cokriging approach and (2) developing a novel iterative optimization algorithm for personalized parameter estimation. The proposed framework is demonstrated by estimating G&R model parameters and predicting individual aneurysm growth using follow-up CT images of Abdominal Aortic Aneurysms (AAAs) from 21 patients. Results show that the personalized parameters are satisfactorily estimated and the growth of AAAs is predicted within the clinically relevant time frame, i.e., less than 2 h, without a loss of accuracy.


Assuntos
Aneurisma da Aorta Abdominal , Algoritmos , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Artérias , Simulação por Computador , Humanos , Aprendizado de Máquina
13.
ACS Appl Mater Interfaces ; 13(10): 12259-12267, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33683114

RESUMO

Tactile sensor arrays have attracted considerable attention for their use in diverse applications, such as advanced robotics and interactive human-machine interfaces. However, conventional tactile sensor arrays suffer from electrical crosstalk caused by current leakages between the tactile cells. The approaches that have been proposed thus far to overcome this issue require complex rectifier circuits or a serial fabrication process. This article reports a flexible tactile sensor array fabricated through a batch process using a mesh. A carbon nanotube-polydimethylsiloxane composite is used to form an array of sensing cells in the mesh through a simple "dip-coating" process and is cured into a concave shape. The contact area between the electrode and the composite changes significantly under pressure, resulting in an excellent sensitivity (5.61 kPa-1) over a wide range of pressure up to 600 kPa. The mesh separates the composite into the arranged sensing cells to prevent the electrical connection between adjacent cells and simultaneously connects each cell mechanically. Additionally, the sensor shows superior durability compared with previously reported tactile sensors because the mesh acts as a support beam. Furthermore, the tactile sensor array is successfully utilized as a Braille reader via information processing based on machine learning.


Assuntos
Dimetilpolisiloxanos/química , Nanotubos de Carbono/química , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais , Desenho de Equipamento , Humanos , Pressão , Tato
14.
J Int Med Res ; 48(11): 300060520968449, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33176516

RESUMO

OBJECTIVE: To investigate the relationship between the characteristics of intraluminal thrombus (ILT) with abdominal aortic aneurysm (AAA) expansion. METHODS: This retrospective clinical study applied homogeneous multistate continuous-time Markov chain models to longitudinal computed tomography (CT) data from Korean patients with AAA. Four AAA states were considered (early, mild, severe, fatal) and the maximal thickness of the ILT (maxILT), the fraction of the wall area covered by the ILT (areafrac) and the fraction of ILT volume (volfrac) were used as covariates. RESULTS: The analysis reviewed longitudinal CT images from 26 patients. Based on likelihood-ratio statistics, the areafrac was the most significant biomarker and maxILT was the second most significant. In addition, within AAAs that developed an ILT layer, the analysis found that the AAA expands relatively quickly during the early stage but the rate of expansion reduces once the AAA has reached a larger size. CONCLUSION: The results recommend surgical intervention when a patient has an areafrac more than 60%. Although this recommendation should be considered with caution given the limited sample size, physicians can use the proposed model as a tool to find such recommendations with their own data.


Assuntos
Aneurisma da Aorta Abdominal , Trombose , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Humanos , Cadeias de Markov , Estudos Retrospectivos , Trombose/diagnóstico por imagem , Tomografia Computadorizada por Raios X
15.
BMC Oral Health ; 20(1): 270, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028287

RESUMO

BACKGROUND: Despite the integral role of cephalometric analysis in orthodontics, there have been limitations regarding the reliability, accuracy, etc. of cephalometric landmarks tracing. Attempts on developing automatic plotting systems have continuously been made but they are insufficient for clinical applications due to low reliability of specific landmarks. In this study, we aimed to develop a novel framework for locating cephalometric landmarks with confidence regions using Bayesian Convolutional Neural Networks (BCNN). METHODS: We have trained our model with the dataset from the ISBI 2015 grand challenge in dental X-ray image analysis. The overall algorithm consisted of a region of interest (ROI) extraction of landmarks and landmarks estimation considering uncertainty. Prediction data produced from the Bayesian model has been dealt with post-processing methods with respect to pixel probabilities and uncertainties. RESULTS: Our framework showed a mean landmark error (LE) of 1.53 ± 1.74 mm and achieved a successful detection rate (SDR) of 82.11, 92.28 and 95.95%, respectively, in the 2, 3, and 4 mm range. Especially, the most erroneous point in preceding studies, Gonion, reduced nearly halves of its error compared to the others. Additionally, our results demonstrated significantly higher performance in identifying anatomical abnormalities. By providing confidence regions (95%) that consider uncertainty, our framework can provide clinical convenience and contribute to making better decisions. CONCLUSION: Our framework provides cephalometric landmarks and their confidence regions, which could be used as a computer-aided diagnosis tool and education.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Pontos de Referência Anatômicos/diagnóstico por imagem , Teorema de Bayes , Cefalometria , Reprodutibilidade dos Testes
16.
J Biomech ; 112: 110038, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32961424

RESUMO

Performance during seated balancing is often used to assess trunk neuromuscular control, including evaluating impairments in back pain populations. Balancing in less challenging environments allows for flexibility in control, which may not depend on health status but instead may reflect personal preferences. To make assessment less ambiguous, trunk neuromuscular control should be maximally challenged. Thirty-four healthy subjects balanced on a robotic seat capable of adjusting rotational stiffness. Subjects balanced while rotational stiffness was gradually reduced. The rotational stiffness at which subjects could no longer maintain balance, defined as critical stiffness (kCrit), was used to quantify the subjects' trunk neuromuscular control. A higher kCrit reflects poorer control, as subjects require a more stable base to balance. Subjects were tested on three days separated by 24 hours to assess test-retest reliability. Anthropometric (height and weight) and demographic (age and sex) influences on kCrit and its reliability were assessed. Height and age did not affect kCrit; whereas, being heavier (p < 0.001) and female (p = 0.042) significantly increased kCrit. Reliability was also affected by anthropometric and demographic factors, highlighting the potential problem of inflated reliability estimates from non-control related attributes. kCrit measurements appear reliable even after removing anthropometric and demographic influences, with adjusted correlations of 0.612 (95%CI: 0.433-0.766) versus unadjusted correlations of 0.880 (95%CI: 0.797-0.932). Besides assessment, trainers and therapists prescribing exercise could use the seated balance task and kCrit to precisely set difficulty level to a percentage of the subject's stability threshold to optimize improvements in trunk neuromuscular control and spine health.


Assuntos
Equilíbrio Postural , Robótica , Peso Corporal , Feminino , Humanos , Postura , Reprodutibilidade dos Testes , Tronco
17.
RSC Adv ; 10(7): 4014-4022, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35492670

RESUMO

A two-step machine learning (ML) algorithm for estimating both fractional flow reserve (FFR) and decision (DEC) for the coronary artery is introduced in this study. The primary purpose of this model is to suggest the possibility of ML-based FFR to be more accurate than the FFR calculation technique based on a computational fluid dynamics (CFD) method. For this purpose, a two-step ML algorithm that considers the flow characteristics and biometric features as input features of the ML model is designed. The first step of the algorithm is based on the Gaussian progress regression model and is trained by a synthetic model using CFD analysis. The second step of the algorithm is based on a support vector machine with patient data, including flow characteristics and biometric features. Consequently, the accuracy of the FFR estimated from the first step of the algorithm was similar to that of the CFD-based method, while the accuracy of DEC in the second step was improved. This improvement in accuracy was analyzed using flow characteristics and biometric features.

18.
IEEE J Biomed Health Inform ; 23(6): 2537-2550, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30714936

RESUMO

Translating recent advances in abdominal aortic aneurysm (AAA) growth and remodeling (G&R) knowledge into a predictive, patient-specific clinical treatment tool requires a major paradigm shift in computational modeling. The objectives of this study are to develop a prediction framework that first calibrates the physical AAA G&R model using patient-specific serial computed tomography (CT) scan images, predicts the expansion of an AAA in the future, and quantifies the associated uncertainty in the prediction. We adopt a Bayesian calibration method to calibrate parameters in the G&R computational model and predict the magnitude of AAA expansion. The proposed Bayesian approach can take different sources of uncertainty; therefore, it is well suited to achieve our aims in predicting the AAA expansion process as well as in computing the propagated uncertainty. We demonstrate how to achieve the proposed aims by solving the formulated Bayesian calibration problems for cases with the synthetic G&R model output data and real medical patient-specific CT data. We compare and discuss the performance of predictions and computation time under different sampling cases of the model output data and patient data, both of which are simulated by the G&R computation. Furthermore, we apply our Bayesian calibration to real patient-specific serial CT data and validate our prediction. The accuracy and efficiency of the proposed method is promising, which appeals to computational and medical communities.


Assuntos
Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/patologia , Interpretação de Imagem Assistida por Computador/métodos , Modelagem Computacional Específica para o Paciente , Teorema de Bayes , Simulação por Computador , Progressão da Doença , Humanos , Tomografia Computadorizada por Raios X
19.
IEEE Trans Neural Syst Rehabil Eng ; 27(2): 275-282, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30629508

RESUMO

To study the complex neuromuscular control pathways in human movement, biomechanical parametric models and system identification methods are employed. Although test-retest reliability is widely used to validate the outcomes of motor control tasks, it was not incorporated in system identification methods. This study investigates the feasibility of incorporating test-retest reliability in our previously published method of selecting sensitive parameters. We consider the selected parameters via this novel approach to be the key neuromuscular parameters, because they meet three criteria: reduced variability, improved goodness of fit, and excellent reliability. These criteria ensure that the parameter variability is below a user-defined value, the number of these parameters is maximized to enhance goodness of fit, and their test-retest reliability is above a user-defined value. We measured variability, the goodness of fit, and reliability using Fisher information matrix, variance accounted for, and intraclass correlation, respectively. We also incorporated model diversity as a fourth optional criterion to narrow down the solution space of key parameters. We applied this approach to the head position tracking tasks in axial rotation and flexion/extension. A total of forty healthy subjects performed the tasks during two visits. With variability and reliability measures ≤0.35 and ≥0.75, respectively, we selected three key parameters out of twelve with the goodness of fit >69%. The key parameters were associated with at least two neuromuscular pathways out of four modeled pathways (visual, proprioceptive, vestibular, and intrinsic), which is a measure of model diversity. Therefore, it is feasible to incorporate reliability and diversity in system identification of key neuromuscular pathways in our application.


Assuntos
Movimentos da Cabeça/fisiologia , Modelos Neurológicos , Monitoração Neuromuscular/métodos , Adulto , Algoritmos , Fenômenos Biomecânicos , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Propriocepção/fisiologia , Reprodutibilidade dos Testes , Vestíbulo do Labirinto/fisiologia , Vias Visuais/fisiologia
20.
Stat Methods Med Res ; 28(9): 2801-2819, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30039745

RESUMO

With rapid aging of world population, Alzheimer's disease is becoming a leading cause of death after cardiovascular disease and cancer. Nearly 10% of people who are over 65 years old are affected by Alzheimer's disease. The causes have been studied intensively, but no definitive answer has been found. Genetic predisposition, abnormal protein deposits in brain, and environmental factors are suspected to play a role in the development of this disease. In this paper, we model progression of Alzheimer's disease using a multi-state Markov model to investigate the significance of known risk factors such as age, apolipoprotein E4, and some brain structural volumetric variables from magnetic resonance imaging scans (e.g., hippocampus, etc.) while predicting transitions between different clinical diagnosis states. With the Alzheimer's Disease Neuroimaging Initiative data, we found that the model with age is not significant (p = 0.1733) according to the likelihood ratio test, but the apolipoprotein E4 is a significant risk factor, and the examination of apolipoprotein E4-by-sex interaction suggests that the apolipoprotein E4 link to Alzheimer's disease is stronger in women. Given the estimated transition probabilities, the prediction accuracy is as high as 0.7849.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Cadeias de Markov , Idoso , Progressão da Doença , Feminino , Humanos , Masculino , Neuroimagem , Fatores de Risco , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...