Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904654

RESUMO

Time-division multiple access (TDMA)-based medium access control (MAC) protocol has been widely used for avoiding access conflicts in wireless multi-hop ad hoc networks, where the time synchronization among wireless nodes is essential. In this paper, we propose a novel time synchronization protocol for TDMA-based cooperative multi-hop wireless ad hoc networks, which are also called barrage relay networks (BRNs). The proposed time synchronization protocol is based on cooperative relay transmissions to send time synchronization messages. We also propose a network time reference (NTR) selection technique for improving the convergence time and average time error. In the proposed NTR selection technique, each node overhears the user identifier (UID) of other nodes, hop count (HC) from them to itself, and network degree, which denotes the number of 1-hop neighbor nodes. Then, the node with the minimum HC from all other nodes is selected as the NTR node. If there are multiple nodes with the minimum HC, the node with the larger degree is selected as the NTR node. To the best of our knowledge, the proposed time synchronization protocol with the NTR selection is introduced for the first time for cooperative (barrage) relay networks in this paper. Through computer simulations, we validate the proposed time synchronization protocol in terms of the average time error under various practical network scenarios. Furthermore, we also compare the performance of the proposed protocol with the conventional time synchronization methods. It is shown that the proposed protocol significantly outperforms the conventional methods in terms of the average time error and convergence time. The proposed protocol is shown to be more robust against packet loss as well.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121309, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550991

RESUMO

White-light-emitting La10W22O81 (LWO): xDy3+ (0.5 ≤ x ≤ 10 mol%) nanocrystalline phosphors were developed by a facile hydrothermal assisted solid-state reaction. X-ray diffraction (XRD) pattern indicated that the prepared samples adopted orthorhombic crystal structures. The agglomeration of uniform nanorods was identified from the FE-SEM analysis of the optimized LWO: 1.5 mol% Dy3+ nanocrystalline phosphors. Additionally, transmission electron microscope, scanning transmission electron microscopy, selected area electron diffraction, and X-ray photoelectron spectroscopy were employed to explore the surface morphology, size, interplanar distance, and chemical composition with valence states of the LWO: 1.5 mol% Dy3+ phosphors, respectively. By exciting with 387 nm, the LWO: Dy3+ emission spectra showed two intense peaks at 476 nm (4F9/2→6H15/2) and 571 nm (4F9/2→6H13/2) and a shoulder peak at 659 nm (4F9/2→6H11/2). Optimum emission intensity was achieved for 1.5 mol% Dy3+ in the LWO host lattice. The luminescence quenching beyond 1.5 mol% Dy3+ is attributed to the dipole-dipole interactions when the Dy3+ (donor) and Dy3+ (acceptor) ions are at a critical distance of 58.53 Å. Photometric studies were conducted to evaluate the performance and practical applicability of the phosphors. The CIE chromaticity diagram suggests that the LWO: 1.5 mol% Dy3+ nanophosphor conspicuously exhibits cool white light. Therefore, this material could be a promising and potential white light-emitting nanocrystalline phosphor material for white light emitting diodes (LEDs) under near-UV excitation. In addition, the toxicity of the optimized nanophosphor in normal WI-38 lung fibroblast cells and MCF-7 breast cancer cells was examined. Surprisingly, LWO: 1.5 mol% Dy3+ nanophosphor was found to be non-cytotoxic to normal cells, but extremely toxic to cancer cells. Therefore, the nanophosphor materials can be considered potential candidates for biomedical applications, particularly for cancer treatment.


Assuntos
Disprósio , Luminescência , Disprósio/química , Luz , Transição de Fase , Difração de Raios X
3.
Sensors (Basel) ; 22(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35459079

RESUMO

We propose a method for minimizing global buffer access within a deep learning accelerator for convolution operations by maximizing the data reuse through a local register file, thereby substituting the local register file access for the power-hungry global buffer access. To fully exploit the merits of data reuse, this study proposes a rearrangement of the computational sequence in a deep learning accelerator. Once input data are read from the global buffer, repeatedly reading the same data is performed only through the local register file, saving significant power consumption. Furthermore, different from prior works that equip local register files in each computation unit, the proposed method enables sharing a local register file along the column of the 2D computation array, saving resources and controlling overhead. The proposed accelerator is implemented on an off-the-shelf field-programmable gate array to verify the functionality and resource utilization. Then, the performance improvement of the proposed method is demonstrated relative to popular deep learning accelerators. Our evaluation indicates that the proposed deep learning accelerator reduces the number of global-buffer accesses to nearly 86.8%, consequently saving up to 72.3% of the power consumption for the input data memory access with a minor increase in resource usage compared to a conventional deep learning accelerator.


Assuntos
Aprendizado Profundo , Registros
4.
Inorg Chem ; 61(9): 3851-3865, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35179872

RESUMO

Non-cytotoxic upconversion nanocrystals are preferred candidates because they offer exceptional advantages for numerous applications, ranging from optical thermometry to bioimaging/biomedical applications. In this report, we demonstrate the luminescence characteristics and practical utility of a multifunctional upconversion nanophosphor based on Yb3+/Er3+:La2(WO4)3 (LWO) flakes. Strong upconversion green emission was observed from 6-mol % Er3+-doped LWO nanophosphor flakes excited by a 980 nm laser. We further enhanced the upconversion emission considerably by co-doping LWO nanophosphors with Yb3+/Er3+ to exploit energy migration from Yb3+ to Er3+ ions. The exceptional improvement in upconversion green and near-infrared emission was achieved by Yb3+ ion co-doping up to 6 mol %; beyond 6 mol %, emission intensities remarkably dropped due to concentration quenching. Photometric parameters were evaluated with and without Yb3+ ion-doped LWO nanophosphors, which exhibited a high green color purity of 95.6%, to elucidate their energy transfer mechanism. In addition, temperature-dependent upconversion emission trends were evaluated by analyzing the fluorescence intensity ratio, exhibiting higher temperature sensitivity than that previously reported. This suggests the applicability of our proposed nanophosphors to optical thermometry. As for bioimaging applications, the non-cytotoxicity of the optimized nanophosphor was confirmed based on distinct fluorescence images of a normal fibroblast cell line (L929). Furthermore, we demonstrated the strong cytotoxicity of nanophosphors against human colon cancer (HCT-116) cells. Based on the results, non-cytotoxic Yb3+(6 mol %)/Er3+ (6 mol %):LWO upconversion nanophosphor flakes are expected to be exceptional candidates owing to their extensive suitability to the fields of upconversion lasers, optical thermometry, and biomedical and anticancer applications. The results indicate the potential of upconversion materials in the effective execution of multiple strategic applications.


Assuntos
Antineoplásicos , Nanopartículas , Termometria , Antineoplásicos/farmacologia , Humanos , Luz , Luminescência , Nanopartículas/química
5.
ACS Appl Mater Interfaces ; 11(21): 19363-19371, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31062579

RESUMO

Sensitive and deformable chemical sensors manufactured by a low-cost process are promising as they are disposable, can be applied on curved, complex structures, and provide environmental information to users. Although many nanomaterial-based flexible sensors have been suggested to meet these demands, their limited chemical sensitivity and mechanical flexibility pose challenges. Here, a highly deformable chemical sensor is reported with improved sensitivity that integrates multiwalled carbon nanotubes (CNTs) and nanolayered transition metal dichalcogenides (TMDCs) on cellulose paper. Liquid dispersions of CNTs and TMDCs are absorbed and dried on porous cellulose for sensor fabrication, which is simple, scalable, rapid, and inexpensive. The cellulose substrate enables reversible three-dimensional folding and unfolding, bending down to 0.25 mm, and twisting up to 1800° (∼628.4 rad m-1) without degradation, and the CNTs maintain a percolation network and simultaneously provide gas reactivity. Functionalization of CNTs with TMDCs (WS2 or MoS2) greatly improves the sensing response upon exposure to NO2 molecules by more than 150%, and the sensor can also selectively detect NO2 over diverse reducing vapors. The measured NO2 sensitivity is 4.57% ppm-1, which is much higher than that of previous paper-based sensors. Our sensor can stably and sensitively detect the gas even under severe deformation such as heavy folding and crumpling. Hybrid integration of CNTs and TMDCs on cellulose paper may also be used to detect other harmful gases and can be applicable in low-cost portable devices that require reliable deformability.

6.
ACS Appl Mater Interfaces ; 11(20): 18617-18625, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31018637

RESUMO

Micro-/nanoelectromechanical (MEM/NEM) switches have been extensively studied to address the limitations of transistors, such as the increased standby power consumption and performance dependence on temperature and radiation. However, their lifetimes are limited owing to the degradation of the contact surfaces. Even though several materials and structural designs have been recently developed to improve the lifetime, the production of a microswitch that is compatible with a complementary metal-oxide semiconductor (CMOS) with a long lifetime remains a significant challenge. We demonstrate a vertically actuated MEM switch with extremely high reliability by integrating a carbon nanotube (CNT) network on a gold electrode as the contact material using a low-temperature, CMOS-compatible solution process. In addition to their outstanding mechanical and electrical properties of CNTs, their deformability dramatically increases the effective contact area of the switch, thus resulting in the extension of the lifetime. The CNT-coated MEM switch exhibits a lifetime that is more than 7 × 108 cycles when operated in hot-switching conditions, which is 1.9 × 104 times longer than that of a control device without CNTs. The switch also shows an excellent switching performance, including a low electrical resistance, high on/off ratio, and an extremely small off-state current.

7.
Nanotechnology ; 30(21): 215501, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30721895

RESUMO

The functionalization of graphene with organic molecules is beneficial for the realization of high-performance graphene sensors because functionalization can provide enhanced functionalities beyond the properties of pristine graphene. Although various types of sensors based on organic-graphene hybrids have been developed, the functionalization processes have poor thickness-controllability/reliability or require post-processing, and sensor applications rely on conventional, rigid substrates such as SiO2/Si. Here, a flexible and transparent metalloporphyrin (MPP)-graphene hybrid for sensitive UV detection and chemical sensing is demonstrated. MPP, which provides strong light absorption, redox chemistry, and catalytic activity, is simply deposited onto graphene via one-step evaporation. Optical and electronic characterizations confirm that the graphene is successfully functionalized by MPP while maintaining its outstanding electronic properties. The MPP-functionalization greatly improves the photo- and chemical-sensing performances of the graphene, resulting in over 200% enhanced sensitivities for both UV light (365 nm) and toluene. Simultaneously, the MPP-graphene sensor exhibits no considerable change in electrical resistance under bending conditions, and remarkable optical transmittance in the visible range. On the basis of the excellent performances of the MPP-graphene hybrid, including high sensitivities, flexibility, transparency, and the ease and cost-effectiveness of the MPP-functionalization, it will be a promising candidate for flexible and transparent sensor applications.

8.
Inorg Chem ; 58(3): 2001-2011, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30644727

RESUMO

Bright fluorescent rare-earth-ion-doped upconversion nanomaterials are attractive choices for photonic devices. A remarkable green upconversion emission has been obtained by the sensitizing effect of Yb3+ in a Yb3+/Er3+:NaLaMgWO6 (NLMWO) nanophosphor under near-infrared (NIR) excitation. A citrate sol-gel method was employed to synthesize the nanophosphor samples. The lack of a secondary phase in the X-ray diffraction pattern confirms that the Er3+ and Yb3+ ions are incorporated in the ordered double-perovskite structure. Surface analysis and particle evaluation are performed by field-emission scanning electron microscopy and transmission electron microscopy analysis. Upconversion and downconversion emission performances were systematically studied by varying the dopant concentrations. A strong upconversion green emission can be observed with the naked eye, and it resembles the upconversion spectra of Er3+-doped phosphors. Remarkably, because of an energy-transfer process, the green upconversion emission can be converted into a strong red emission by codoping with Yb3+ ions. We observed the color tuning effect from green to red, which can be controlled by varying the Yb3+ concentration in the codoped phosphors during NIR excitation. A systematic investigation of the upconversion mechanism from Yb3+ to Er3+ doubly doped NLMWO nanocrystals is demonstrated. The upconversion mechanism was evaluated only by varying the excitation power of the laser as well. A strong NIR emission at 1.57 µm corresponding to Er3+ can be significantly enhanced by increasing the codoping concentration of Yb3+ ions. The energy migration pathway is accurately presented. The Commission internationale de l'éclairage color coordinates were analyzed for singly and doubly doped nanophosphors. The cytotoxicity of the codoped nanophosphor system was evaluated using WI-38 cell lines. This optimized codoped nanophosphor material is noncytotoxic; thus, it can be useful for in vitro studies in biological studies. On the basis of the obtained results, the NLMWO:Yb3+/Er3+ nanophosphors can be a promising choice for novel upconversion photonic applications.

9.
Int J Mol Med ; 41(2): 924-934, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29207025

RESUMO

The present study investigated the anti­obesity effects of enzyme­treated Ecklonia cava extract (EEc) in C57BL/6N mice with high­fat diet (HFD)­induced obesity. The EEc was separated and purified with the digestive enzymes pectinase (Rapidase X­Press L) and cellulase (Rohament CL) and its effects on the progression of HFD­induced obesity were examined over 10 weeks. The mice were divided into 6 groups (n=10/group) as follows: Normal diet group, HFD group, mice fed a HFD with 25 mg/kg/day Garcinia cambogia extract and mice fed a HFD with 5, 25 or 150 mg/kg/day EEc (EHD groups). Changes in body weight, fat, serum lipid levels and lipogenic enzyme levels were determined. The body weight and liver weight were increased in the HFD group compared with those in the ND group, which was significantly reduced by EEc supplementation. In addition, significant reductions in epididymal, perirenal and mesenteric white adipose tissues were present in the EHD groups and all three EHD groups exhibited decreases in insulin, leptin and glutamate pyruvate transaminase levels compared with those in the HFD group. In addition, EEc treatment significantly decreased the serum and hepatic triglyceride levels compared with those in the HFD group. However, the levels of high­density lipoprotein cholesterol/total cholesterol ration increased significantly in EHD­25 and ­150 groups compared with those in the HFD group. Changes in adipogenic and lipogenic protein expression in the liver was assessed by western blot analysis. The EHD­25 and -150 groups exhibited reduced levels of CCAAT/enhancer­binding protein α and peroxisome proliferator activated receptor Î³. However, the phosphorylation ratios of AMP­activated protein kinase and acetyl­CoA carboxylase were significantly increased in the liver tissue obtained from the EHD (5, ­25 and ­150 mg/kg/day) groups compared with those in the HFD group. EEc supplementation reduced levels of sterol regulatory element­binding protein­1c, adipose fatty acid­binding protein, fatty acid synthase and leptin, while it significantly increased glucose transporter type 4 and adiponectin protein levels in the liver tissues of all three EHD groups compared with those in the HFD group. Taken together, these results suggest that EEc exerts anti­obesity effects by reducing body weight and the serum and hepatic levels of obesity­associated factors. Thus, EEc supplementation reduces HFD­induced obesity in C57BL/6N mice and has the potential to prevent obesity and subsequent metabolic disorders.


Assuntos
Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/administração & dosagem , Extratos Celulares/administração & dosagem , Obesidade/tratamento farmacológico , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipogenia/genética , Animais , Fármacos Antiobesidade/química , Extratos Celulares/química , Celulase/química , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Obesidade/genética , Obesidade/patologia , PPAR gama/genética , Phaeophyceae/química , Poligalacturonase/química , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
10.
Sci Rep ; 7(1): 10841, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883490

RESUMO

The heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is considered as a human carcinogenic or mutagenic compound that is produced from the co-condensation of creatinine and amino acids as meats cook at high temperatures. The cooking of meats at high temperatures produces fumes, and these fumes can be suspended as aerosols via the vapor-to-particle (or -droplet) process in a temperature gradient field. Size distributions of the aerosols included a significant portion of nano- and submicron-sized particles, and these can be directly deposited in the lungs and on skin by particle transport phenomena near cooking areas. In this study, for the first time, PhIP-incorporated oleic acid (OA, simulating cooking oil) (PhIP@OA) particles, including individual particulate PhIP as simulated fumes from meat cooking, were constantly produced via collison atomization and subsequent drying processes. The aerosol particles were then dispersed in phosphate-buffered saline for cytotoxicity and senescence-associated ß-galactosidase assays, which were compared with dissolved PhIP in dimethyl sulfoxide. PhIP and PhIP@OA did not show significant cytotoxic effects on SHSY5Y, MRC5, and human dermal fibroblast cells compared with the dissolved PhIP but clearly induced premature senescence activities that may be caused by a limited release of PhIP molecules from the particulate PhIP.


Assuntos
Aerossóis/efeitos adversos , Culinária , Exposição por Inalação/efeitos adversos , Carne , Aerossóis/análise , Animais , Bioensaio , Fenômenos Químicos , Humanos , Tamanho da Partícula , Espécies Reativas de Oxigênio
11.
Small ; 13(27)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28544754

RESUMO

Low-dimensional carbon materials, such as semiconducting carbon nanotubes (CNTs), conducting graphene, and their hybrids, are of great interest as promising candidates for flexible, foldable, and transparent electronics. However, the development of highly photoresponsive, flexible, and transparent optoelectronics still remains limited due to their low absorbance and fast recombination rate of photoexcited charges, despite the considerable potential of photodetectors for future wearable and foldable devices. This work demonstrates a heterogeneous, all-carbon photodetector composed of graphene electrodes and porphyrin-interfaced single-walled CNTs (SWNTs) channel, exhibiting high photoresponse, flexibility, and full transparency across the device. The porphyrin molecules generate and transfer photoexcited holes to the SWNTs even under weak white light, resulting in significant improvement of photoresponsivity from negligible to 1.6 × 10-2 A W-1 . Simultaneously, the photodetector exhibits high flexibility allowing stable light detection under ≈50% strain (i.e., a bending radius of ≈350 µm), and retaining a sufficient transparency of ≈80% at 550 nm. Experimental demonstrations as a wearable sunlight sensor highlight the utility of the photodetector that can be conformally mounted on human skin and other curved surfaces without any mechanical and optical constraints. The heterogeneous integration of porphyrin-SWNT-graphene may provide a viable route to produce invisible, high-performance optoelectronic systems.

12.
Chemphyschem ; 17(18): 2854-62, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27304393

RESUMO

Molybdenum disulfide (MoS2 ) is a promising candidate for electronic and optoelectronic applications. However, its application in light harvesting has been limited in part due to crystal defects, often related to small crystallite sizes, which diminish charge separation and transfer. Here we demonstrate a surface-engineering strategy for 2D MoS2 to improve its photoelectrochemical properties. Chemically exfoliated large-area MoS2 thin films were interfaced with eight molecules from three porphyrin families: zinc(II)-, gallium(III)-, iron(III)-centered, and metal-free protoporphyrin IX (ZnPP, GaPP, FePP, H2 PP); metal-free and zinc(II) tetra-(N-methyl-4-pyridyl)porphyrin (H2 T4, ZnT4); and metal-free and zinc(II) tetraphenylporphyrin (H2 TPP, ZnTPP). We found that the photocurrents from MoS2 films under visible-light illumination are strongly dependent on the interfacial molecules and that the photocurrent enhancement is closely correlated with the highest occupied molecular orbital (HOMO) levels of the porphyrins, which suppress the recombination of electron-hole pairs in the photoexcited MoS2 films. A maximum tenfold increase was observed for MoS2 functionalized with ZnPP compared with pristine MoS2 films, whereas ZnT4-functionalized MoS2 demonstrated small increases in photocurrent. The application of bias voltage on MoS2 films can further promote photocurrent enhancements and control current directions. Our results suggest a facile route to render 2D MoS2 films useful for potential high-performance light-harvesting applications.

13.
Nanotechnology ; 27(20): 205502, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27071515

RESUMO

A novel carbon nanotube (CNT)-based flexible strain sensor with the highest gauge factor of 4739 is presented. CNT-to-CNT contacts are fabricated on a pair of silicon electrodes fixed on a PDMS specimen for both flexibility and electrical connection. The strain is detected by the resistance change between facing CNT bundles. The proposed approach could be applied for diverse applications with a high gauge factor.

14.
ACS Appl Mater Interfaces ; 8(14): 8864-9, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27018600

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as attractive direct bandgap semiconducting materials with remarkable properties. Recently, TMDC-based electronic and optoelectronic systems have been demonstrated with various chemical doping and functionalization approaches for modulating their physical properties and enhancing device performances. However, the dependence of intrinsic properties of TMDCs on diverse solvents, which are used necessarily in fabrication processes and chemical doping, remains largely unaddressed. Here we report a charge transfer mechanism in TMDCs by commonly used solvents such as chloroform, toluene, acetone, and 2-propanol, which significantly changes the physical properties of monolayer MoS2 and WSe2. We find that the relative difference in electronegativity between solvents and TMDCs drives the transfer of electrons from or to the TMDCs, which results in photoluminescence (PL) enhancement or quenching depending on the change of carrier density in TMDCs. The analysis of exciton and trion spectral weights in MoS2 as a function of solvent electronegativity provides evidence of charge transfer. Finally, conductive atomic force microscopy (C-AFM) on TMDCs before and after immersion in the solvents further supports the charge transfer mechanism and resulting changes in carrier density. Our results highlight the importance of selection of solvents for solution-processed 2D TMDC devices and systems.

15.
ACS Nano ; 10(1): 1671-80, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26720839

RESUMO

Atomically thin transition metal dichalcogenides (TMDCs) have attracted great interest as a new class of two-dimensional (2D) direct band gap semiconducting materials. The controllable modulation of optical and electrical properties of TMDCs is of fundamental importance to enable a wide range of future optoelectronic devices. Here we demonstrate a modulation of the optoelectronic properties of 2D TMDCs, including MoS2, MoSe2, and WSe2, by interfacing them with two metal-centered phthalocyanine (MPc) molecules: nickel Pc (NiPc) and magnesium Pc (MgPc). We show that the photoluminescence (PL) emission can be selectively and reversibly engineered through energetically favorable electron transfer from photoexcited TMDCs to MPcs. NiPc molecules, whose reduction potential is positioned below the conduction band minima (CBM) of monolayer MoSe2 and WSe2, but is higher than that of MoS2, quench the PL signatures of MoSe2 and WSe2, but not MoS2. Similarly, MgPc quenches only WSe2, as its reduction potential is situated below the CBM of WSe2, but above those of MoS2 and MoSe2. The quenched PL emission can be fully recovered when MPc molecules are removed from the TMDC surfaces, which may be refunctionalized and recycled multiple times. We also find that photocurrents from TMDCs, probed by photoconductive atomic force microscopy, increase over 2-fold only when the PL is quenched by MPcs, further supporting the photoinduced charge transfer mechanism. Our results should benefit design strategies for 2D inorganic-organic optoelectronic devices and systems with tunable properties and improved performances.

16.
J Nanosci Nanotechnol ; 15(9): 6357-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26716190

RESUMO

Nanomaterials have drawn great interest in recent years due to their extraordinary properties that make them advantageous in food packaging applications. Specifically, nanoparticles can impart significant barrier properties, as well as mechanical, optical, catalytic, and antimicrobial properties into packaging. Silver nanoparticles (AgNPs) and nanoclay account for the majority of the nano-enabled food packaging on the market, while others, such as nano-zinc oxide (ZnO) and titanium, share less of the current market. In current food packaging, these nanomaterials are primarily used to impart antimicrobial function and to improve barrier properties, thereby extending the shelf life and freshness of packaged food. On the other hand, there is growing concern about the migration of nanomaterials from food contact materials to foodstuffs and its associated potential risks. Indeed, insufficient data about environmental and human safety assessments of migration and exposure of nanomaterials are hindering their market growth. To overcome this barrier, the public believes that legislation from government agencies is critical. This review provides an overview of the characteristics and functions of major nanomaterials that are commonly applied to food packaging, including available and near- future products. Migration research, safety issues, and public concerns are also discussed.


Assuntos
Embalagem de Alimentos , Inocuidade dos Alimentos , Nanoestruturas , Nanotecnologia
17.
Sci Rep ; 5: 18265, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26666843

RESUMO

We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750-900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature.

18.
Small ; 11(41): 5520-7, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26313027

RESUMO

2D transition metal dichalcogenides (TMDCs) are nanomanufactured using a generalized strategy with self-assembled DNA nanotubes. DNA nanotubes of various lengths serve as lithographic etch masks for the dry etching of TMDCs. The nanostructured TMDCs are studied by atomic force microscopy, photoluminescence, and Raman spectroscopy. This parallel approach can be used to manufacture 2D TMDC nanostructures of arbitrary geometries with molecular-scale precision.


Assuntos
Calcogênios/química , DNA/química , Metais/química , Nanotubos/química , Impressão Tridimensional , DNA/ultraestrutura , Teste de Materiais , Nanotubos/ultraestrutura
19.
ACS Appl Mater Interfaces ; 6(13): 10181-7, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24914449

RESUMO

Displacement sensing is a fundamental process in mechanical sensors such as force sensors, pressure sensors, accelerometers, and gyroscopes. Advanced techniques utilizing nanomaterials have attracted considerable attention in the drive to enhance the process. In this paper, we propose a novel and highly sensitive device for detecting small displacements. The device utilizes the changes in contact resistance between two sets of vertically aligned carbon nanotube (CNT) arrays, the growth of which was confined to enable their facile and reliable integration with fully fabricated microstructures. Using the displacement transduction of the proposed device, we successfully demonstrated a 3-axis wide bandwidth accelerometer, which was experimentally confirmed to be highly sensitive compared to conventional piezoresistive sensors. Through a test involving 1.2 million cycles of displacement transductions, the contact resistance of the CNT arrays was proved to be excellently stable, which was a consequence of the high electrical stability and mechanical durability of the CNTs.

20.
ACS Appl Mater Interfaces ; 6(9): 6598-605, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24684399

RESUMO

Understanding the interfacial forces of carbon nanotubes (CNTs) is fundamental to the development of electromechanical systems based on the contact of CNTs. However, experimental studies on the adhesion properties between CNTs are scarce despite the remarkable contact quality of CNTs. Here, we present an experimental investigation of the adhesion between the top ends of aligned, self-adjusted CNTs using a CNT-integrated microelectromechanical actuator. The pull-out and pull-in behaviors of the contact as a function of the applied force by the actuator are precisely identified by measuring the contact resistance between the CNTs. The adhesion between the top ends of individual CNTs is extracted from the measured adhesive strength between the CNT arrays, and it agrees with the theoretical values of the van der Waals interactions. By exploiting the adhesion of the CNT-to-CNT contact, a programmable and reliable microelectromechanical switching device is demonstrated. Our results offer design strategies for diverse CNT-based nano- and microelectromechanical devices that need repeatable contacting interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...