Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 10(10): 4931-4941, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31646020

RESUMO

Terahertz (THz) demethylation is a photomedical technique applied to dissociate methyl-DNA bonds and reduce global DNA methylation using resonant THz radiation. We evaluated the performance of THz demethylation and investigated the DNA damage caused by THz irradiation. The demethylation rate in M-293T DNA increased linearly with the irradiation power up to 48%. The degree of demethylation increased with exposure to THz radiation, saturating after 10 min. Although THz demethylation occurred globally, most of the demethylation occurred within the partial genes in the CpG islands. Subsequently, we performed THz demethylation of melanoma cells. The degree of methylation in the melanoma cell pellets decreased by approximately 10-15%, inducing ∼5-8 abasic sites per 105 bp; this was considerably less than the damaged DNA irradiated by the high-power infrared laser beam used for generating THz pulses. These results provide initial data for THz demethylation and demonstrate the applicability of this technique in advanced cancer cell research. THz demethylation has the potential to develop into a therapeutic procedure for cancer, similar to that involving chemical demethylating agents.

2.
Sci Rep ; 9(1): 6413, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015556

RESUMO

DNA methylation is a pivotal epigenetic modification of DNA that regulates gene expression. Abnormal regulation of gene expression is closely related to carcinogenesis, which is why the assessment of DNA methylation is a key factor in cancer research. Terahertz radiation may play an important role in active demethylation for cancer therapy because the characteristic frequency of the methylated DNA exists in the terahertz region. Here, we present a novel technique for the detection and manipulation of DNA methylation using terahertz radiation in blood cancer cell lines. We observed the degree of DNA methylation in blood cancer at the characteristic resonance of approximately 1.7 THz using terahertz time-domain spectroscopy. The terahertz results were cross-checked with global DNA methylation quantification using an enzyme-linked immunosorbent assay. We also achieved the demethylation of cancer DNA using high-power terahertz radiation at the 1.7-THz resonance. The demethylation degrees ranged from 10% to 70%, depending on the type of cancer cell line. Our results show the detection of DNA methylation based on the terahertz molecular resonance and the manipulation of global DNA methylation using high-power terahertz radiation. Terahertz radiation may have potential applications as an epigenetic inhibitor in cancer treatment, by virtue of its ability to induce DNA demethylation, similarly to decitabine.


Assuntos
Metilação de DNA/genética , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Leucemia/genética , Radiação Terahertz , Linhagem Celular Tumoral , Desmetilação , Humanos
3.
J Cell Biochem ; 116(2): 310-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25185536

RESUMO

Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and to secrete paracrine factors for neuroprotection and regeneration. Previously, Rho-kinase inhibitors have been reported to potentiate differentiation of rodent bone marrow MSCs into neuron-like cells induced by CoCl2 (HIF-1α activation-mimicking agent). Here, a strategy of priming MSCs with fasudil, a Rho-kinase inhibitor, was investigated using Wharton's jelly-derived MSCs (WJ-MSCs) to improve recovery in a rat model of intracranial hemorrhage (ICH). In vitro culture of WJ-MSCs by co-treatment with fasudil (30 µM) and CoCl2 provoked morphological changes of WJ-MSCs into neuron-like cells and increased the expression of neuronal markers. Assessment of the secretion profiles showed that fasudil (30 µM) specifically increased glial cell line-derived neurotrophic factor (GDNF) among the secreted proteins at the transcription and secretion levels. For in vivo experiments, WJ-MSCs primed with fasudil (10 µM, exposure for 6 h) were transplanted into ICH rats with HIF-1α upregulation 1 week after injury, and neurological function was assessed via rotarod and limb placement tests for 7 weeks after transplantation. The group with WJ-MSCs primed with fasudil showed improved functional performance compared with the non-primed group. Accordingly, the primed group showed stronger expression of GDNF and higher levels of microtubule-associated protein 2 and neurofilament-H positive-grafted cells in the ICH lesion 3 weeks after transplantation compared with the non-primed group. Therefore, this work suggests that priming WJ-MSCs with fasudil is a possible application for enhanced cell therapy in stroke, with additional beneficial effect of up-regulation of GDNF.


Assuntos
Hemorragia Cerebral/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Geleia de Wharton/citologia , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Hemorragia Cerebral/fisiopatologia , Cobalto/farmacologia , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/metabolismo , Microscopia Confocal , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Quinases Associadas a rho/metabolismo
4.
Int J Biochem Cell Biol ; 45(3): 560-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23246593

RESUMO

Mesenchymal stromal/stem cells derived from human Wharton's jelly (WJ-MSC) have emerged as a favorable source for autologous and allogenic cell therapy. Here, we characterized the proangiogenic features of WJ-MSCs and examined their ability to form functional vessels in in vivo models. First, we examined whether WJ-MSCs express endothelial and smooth muscle cell specific markers after culture in endothelial growth media. WJ-MSCs expressed an endothelial specific marker, VEGFR1, at mRNA and protein levels, but did not express other specific markers (VEGFR2, Tie2, vWF, CD31, and VE-cadherin). Rather, WJ-MSCs expressed smooth muscle cell specific markers, α-SMA, PDGFR-ß and calponin, and were unable to form tube-like structures with lumen on Matrigel. WJ-MSCs secreted growth factors including angiogenin, IGFBP-3, MCP-1, and IL-8, which stimulated endothelial proliferation, migration, and tube formation. When WJ-MSCs suspended in Matrigel were implanted into nude mice, it led to formation of functional vessels containing erythrocytes after 7 days. However, implantation of endothelial cell-suspended Matrigel resulted in no perfused vessels. The implanted WJ-MSCs were stained positively for calponin or PDGFR-ß and were located adjacent to the lining of mouse endothelial cells that were stained with labeled BS-lectin B4. In a murine hindlimb ischemia model, the transplantation of MSCs (5×10(5)cells) into the ischemic limbs improved perfusion recovery and neovascularization of the limbs compared to control group. Therefore, the results suggest that WJ-MSCs promote neovascularization and perfusion by secreting paracrine factors and by functioning as perivascular precursor cells, and that WJ-MSCs can be used efficiently for cell therapy of ischemic disease.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Animais , Biomarcadores/metabolismo , Vasos Sanguíneos/citologia , Células da Medula Óssea/citologia , Diferenciação Celular , Células Cultivadas , Células Endoteliais/citologia , Extremidades/patologia , Extremidades/transplante , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...