Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 95: 109321, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31466714

RESUMO

Tendons with different in vivo functions are known to have different baseline biomechanics, biochemistry and ultrastructure, and these can be affected by changes in loading. However it is not know whether different tendon types respond in the same, or different ways, to changes in loading. This study performed in vitro un-loading (stress deprivation) in culture on ovine medial extensor tendons (MET, a positional tendon), and superficial and deep digital flexor tendons (SDFTs and DDFTs, with energy-storing and intermediate functions respectively), for 21 days (n = 14 each). Tensile strength and elastic modulus were then measured, followed by biochemical assays for sulphated glycosaminoglycan (sGAG) and hydroxyproline content. Histological inspection for cell morphology, cell density and collagen alignment was also performed. The positional tendon (MET) had a significant reduction (∼50%) in modulus and strength (P < 0.001) after in vitro stress-deprivation, however there were no significant effects on the energy-storing tendons (SDFT and DDFT). In contrast, sGAG was not affected in the MET, but was reduced in the SDFT and DDFT (P < 0.001). All tendons lost compactness and collagen organisation, and had reduced cell density, but these were more rapid in the MET than the SDFT and DDFT. These results suggest that different tendon types respond to identical stimuli in different ways, thus; (i) the results from an experiment in one tendon type may not be as applicable to other tendon types as previously thought, (ii) positional tendons may be particularly vulnerable to clinical stress-deprivation, and (iii) graft tendon source may affect the biological response to loading in ligament and tendon reconstruction.


Assuntos
Fenômenos Mecânicos , Tendões/citologia , Tendões/fisiologia , Animais , Fenômenos Biomecânicos , Colágeno/metabolismo , Módulo de Elasticidade , Ligamentos/metabolismo , Ligamentos/fisiologia , Ovinos , Tendões/metabolismo , Resistência à Tração , Suporte de Carga
2.
J Biomech ; 49(13): 2694-2701, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27316761

RESUMO

Both mechanical and structural properties of tendon change after injury however the causal relationship between these properties is presently unclear. This study aimed to determine the extent of biomechanical change in post-injury tendon pathology and whether the sulphated glycosaminoglycans (glycosaminoglycans) present are a causal factor in these changes. Equine superficial digital flexor tendons (SDF tendons) were surgically-injured in vivo (n=6 injured, n=6 control). Six weeks later they were harvested and regionally dissected into twelve regions around the lesion (equal medial/lateral, proximal/distal). Glycosaminoglycans were removed by enzymatic (chondroitinase) treatment. Elastic modulus (modulus) and ultimate tensile strength (UTS) were measured under uniaxial tension to failure, and tendon glycosaminoglycan content was measured by spectrophotometry. Compared to healthy tendons, pathology induced by the injury decreased modulus (-38%; 95%CI -49% to -28%; P<0.001) and UTS (-38%; 95%CI -48% to -28%; P<0.001) and increased glycosaminoglycan content (+52%; 95%CI 39% - 64%; P<0.001) throughout the tendon. Chondroitinase-mediated glycosaminoglycan removal (50%; 95%CI 21-79%; P<0.001) in surgically-injured pathological tendons caused a significant increase in modulus (5.6MPa/µg removed; 95%CI 0.31-11; P=0.038) and UTS (1.0MPa per µg removed; 95%CI 0.043-2; P=0.041). These results demonstrate that the chondroitin/dermatan sulphate glycosaminoglycans that accumulate in pathological tendon post-injury are partly responsible for the altered biomechanical properties.


Assuntos
Sulfatos de Condroitina/metabolismo , Doenças dos Cavalos/metabolismo , Traumatismos dos Tendões/metabolismo , Tendões/metabolismo , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Doenças dos Cavalos/patologia , Cavalos , Humanos , Masculino , Carneiro Doméstico , Traumatismos dos Tendões/patologia , Tendões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...