Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 476: 135018, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38959829

RESUMO

DNA adducts are widely recognized as biomarkers of exposure to environmental carcinogens and associated health effects in toxicological and epidemiological studies. This study presents a targeted and sensitive method for comprehensive DNA adductome analysis using ultra-high-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS). The method was developed using calf thymus DNA, with careful optimization of mass spectrometric parameters, chromatographic separation conditions, and pretreatment methods. Ultimately, a targeted method was established for 41 DNA adducts, which showed good linearity (R2 ≥0.992), recovery (80.1-119.4 %), accuracy (81.3-117.8 %), and precision (relative standard deviation <14.2 %). The established method was employed to analyze DNA adducts in peripheral blood cells from pregnant women in Shanxi and Beijing. Up to 23 DNA adducts were successfully detected in samples of varying sizes. From 2 µg of maternal DNA samples, seven specific adducts were identified: 5-methyl-2'-deoxycytidine (5-MedC), 5-hydroxymethyl-2'-deoxycytidine (5-HmdC), N6-methyl-2'-deoxyadenosine (N6-MedA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), 5-hydroxy-2'-deoxycytidine (5-OHdC), 1,N6-etheno-2'-deoxyadenosine (1,N6-εdA), and N2-methyl-2'-deoxyguanosine (N2-MedG). This study reveals that exposure to higher concentrations of ambient air pollutants may elevate the levels of DNA methylation and oxidative damage at different base sites, highlighting the application potential of DNA adducts as sensitive biomarkers of air pollution exposure.

2.
Sensors (Basel) ; 21(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34283117

RESUMO

Recently, optical dielectric metasurfaces, ultrathin optical skins with densely arranged dielectric nanoantennas, have arisen as next-generation technologies with merits for miniaturization and functional improvement of conventional optical components. In particular, dielectric metalenses capable of optical focusing and imaging have attracted enormous attention from academic and industrial communities of optics. They can offer cutting-edge lensing functions owing to arbitrary wavefront encoding, polarization tunability, high efficiency, large diffraction angle, strong dispersion, and novel ultracompact integration methods. Based on the properties, dielectric metalenses have been applied to numerous three-dimensional imaging applications including wearable augmented or virtual reality displays with depth information, and optical sensing of three-dimensional position of object and various light properties. In this paper, we introduce the properties of optical dielectric metalenses, and review the working principles and recent advances in three-dimensional imaging applications based on them. The authors envision that the dielectric metalens and metasurface technologies could make breakthroughs for a wide range of compact optical systems for three-dimensional display and sensing.


Assuntos
Lentes , Dispositivos Ópticos , Realidade Virtual , Imageamento Tridimensional , Óptica e Fotônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...