Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 7(1): 11, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712627

RESUMO

Ovarian steroids dramatically impact normal homeostatic and metabolic processes of most tissues within the body, including muscle, bone, neural, immune, cardiovascular, and reproductive systems. Determining the effects of spaceflight on the ovary and estrous cycle is, therefore, critical to our understanding of all spaceflight experiments using female mice. Adult female mice (n = 10) were exposed to and sacrificed on-orbit after 37 days of spaceflight in microgravity. Contemporary control (preflight baseline, vivarium, and habitat; n = 10/group) groups were maintained at the Kennedy Space Center, prior to sacrifice and similar tissue collection at the NASA Ames Research Center. Ovarian tissues were collected and processed for RNA and steroid analyses at initial carcass thaw. Vaginal wall tissue collected from twice frozen/thawed carcasses was fixed for estrous cycle stage determinations. The proportion of animals in each phase of the estrous cycle (i.e., proestrus, estrus, metestrus, and diestrus) did not appreciably differ between baseline, vivarium, and flight mice, while habitat control mice exhibited greater numbers in diestrus. Ovarian tissue steroid concentrations indicated no differences in estradiol across groups, while progesterone levels were lower (p < 0.05) in habitat and flight compared to baseline females. Genes involved in ovarian steroidogenic function were not differentially expressed across groups. As ovarian estrogen can dramatically impact multiple non-reproductive tissues, these data support vaginal wall estrous cycle classification of all female mice flown in space. Additionally, since females exposed to long-term spaceflight were observed at different estrous cycle stages, this indicates females are likely undergoing ovarian cyclicity and may yet be fertile.

2.
Sci Rep ; 10(1): 2336, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047211

RESUMO

Animal models are useful for exploring the health consequences of prolonged spaceflight. Capabilities were developed to perform experiments in low earth orbit with on-board sample recovery, thereby avoiding complications caused by return to Earth. For NASA's Rodent Research-1 mission, female mice (ten 32 wk C57BL/6NTac; ten 16 wk C57BL/6J) were launched on an unmanned vehicle, then resided on the International Space Station for 21/22d or 37d in microgravity. Mice were euthanized on-orbit, livers and spleens dissected, and remaining tissues frozen in situ for later analyses. Mice appeared healthy by daily video health checks and body, adrenal, and spleen weights of 37d-flight (FLT) mice did not differ from ground controls housed in flight hardware (GC), while thymus weights were 35% greater in FLT than GC. Mice exposed to 37d of spaceflight displayed elevated liver mass (33%) and select enzyme activities compared to GC, whereas 21/22d-FLT mice did not. FLT mice appeared more physically active than respective GC while soleus muscle showed expected atrophy. RNA and enzyme activity levels in tissues recovered on-orbit were of acceptable quality. Thus, this system establishes a new capability for conducting long-duration experiments in space, enables sample recovery on-orbit, and avoids triggering standard indices of chronic stress.


Assuntos
Peso Corporal , Fígado/metabolismo , Voo Espacial , Ausência de Peso , Animais , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Fatores de Tempo
3.
Life Sci Space Res (Amst) ; 16: 52-62, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29475520

RESUMO

Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy trauma typify such a clinical scenario. These patients frequently sustain composite injuries with SBDs in concert with extensive soft tissue damage. For soft tissue injury resolution and skeletal reconstruction a patient may experience limited weight bearing for upwards of 6 months. Many small animal investigations have evaluated interventions for SBDs. While providing foundational information regarding the treatment of bone defects, these models do not simulate limited weight bearing conditions after injury. For example, mice ambulate immediately following anesthetic recovery, and in most cases are normally ambulating within 1-3 days post-surgery. Thus, investigations that combine disuse with bone healing may better test novel bone healing strategies. To remove weight bearing, we have designed a SBD rodent healing study in microgravity (µG) on the International Space Station (ISS) for the Rodent Research-4 (RR-4) Mission, which launched February 19, 2017 on SpaceX CRS-10 (Commercial Resupply Services). In preparation for this mission, we conducted an end-to-end mission simulation consisting of surgical infliction of SBD followed by launch simulation and hindlimb unloading (HLU) studies. In brief, a 2 mm defect was created in the femur of 10 week-old C57BL6/J male mice (n = 9-10/group). Three days after surgery, 6 groups of mice were treated as follows: 1) Vivarium Control (maintained continuously in standard cages); 2) Launch Negative Control (placed in the same spaceflight-like hardware as the Launch Positive Control group but were not subjected to launch simulation conditions); 3) Launch Positive Control (placed in spaceflight-like hardware and also subjected to vibration followed by centrifugation); 4) Launch Positive Experimental (identical to Launch Positive Control group, but placed in qualified spaceflight hardware); 5) Hindlimb Unloaded (HLU, were subjected to HLU immediately after launch simulation tests to simulate unloading in spaceflight); and 6) HLU Control (single housed in identical HLU cages but not suspended). Mice were euthanized 28 days after launch simulation and bone healing was examined via micro-Computed Tomography (µCT). These studies demonstrated that the mice post-surgery can tolerate launch conditions. Additionally, forces and vibrations associated with launch did not impact bone healing (p = .3). However, HLU resulted in a 52.5% reduction in total callus volume compared to HLU Controls (p = .0003). Taken together, these findings suggest that mice having a femoral SBD surgery tolerated the vibration and hypergravity associated with launch, and that launch simulation itself did not impact bone healing, but that the prolonged lack of weight bearing associated with HLU did impair bone healing. Based on these findings, we proceeded with testing the efficacy of FDA approved and novel SBD therapies using the unique spaceflight environment as a novel unloading model on SpaceX CRS-10.


Assuntos
Osso e Ossos/fisiopatologia , Fêmur/fisiopatologia , Consolidação da Fratura , Voo Espacial/instrumentação , Simulação de Ambiente Espacial , Animais , Fenômenos Biomecânicos , Osso e Ossos/efeitos da radiação , Fêmur/efeitos da radiação , Consolidação da Fratura/efeitos da radiação , Elevação dos Membros Posteriores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ausência de Peso , Microtomografia por Raio-X
4.
J Lipid Res ; 46(1): 27-35, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15520453

RESUMO

The LDL receptor and the LDL receptor-related protein (LRP) mediate the removal of chylomicron remnants. The LRP pathway involves sequestration of particles in the space of Disse. It has been proposed that either alone or in combination with other factors, such as apolipoprotein E and proteoglycans, hepatic lipase (HL) may contribute to the sequestration of chylomicron remnants. To test this hypothesis, we generated two lines of transgenic mice producing rat HL as a native or as a membrane-anchored form. These animals express HL at levels similar to normal rat. Chylomicron remnants were perfused in a single nonrecirculating pass into the livers of the rat HL transgenic, HL-deficient, and wild-type (WT) mice for 20 min, and the rate of chylomicron remnant removal was measured. Chylomicron remnants were removed at a rate of approximately 50% per pass in WT mice. It was slightly increased in both transgenic mice and reduced in HL-deficient mice compared with the WT mice. Confocal microscopy of liver sections showed that a modest amount of HL colocalized with chylomicron remnant clusters in the transgenic mice, suggesting that HL is a component of the LRP-proteoglycan clusters. These data suggest that HL helps to direct cholesterol to the tissues in which it is localized by a nonenzymatic mechanism.


Assuntos
Quilomícrons/metabolismo , Glicosilfosfatidilinositóis , Lipase/metabolismo , Animais , Remanescentes de Quilomícrons , Lipase/genética , Fígado/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Ratos , Receptores de LDL/fisiologia
5.
J Lipid Res ; 45(12): 2199-210, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15466367

RESUMO

Apolipoprotein E2 (apoE2) and apoE3-Leiden cause chylomicron remnant accumulation (type III hyperlipidemia). However, the degree of dyslipidemia and its penetrance are different in humans and mice. Remnant uptake by isolated liver from apoE-/- mice transgenic for human apoE2, apoE3-Leiden, or apoE3 was measured. In the presence of both LDL receptor (LDLR) and LDL receptor-related protein (LRP), remnant uptake was apoE3>E3-Leiden>E2 mice. Absence of LDLR reduced uptake in apoE3 and apoE3-Leiden-secreting livers but not in apoE2-secreting livers. LRP inhibition with receptor-associated protein reduced uptake in apoE3- and apoE2-secreting livers, but not in apoE3-Leiden-secreting livers, regardless of the presence of LDLR. Fluorescently labeled remnants clustered with LRP in apoE3-secreting livers only in the absence of LDLR, but clustered in livers that expressed apoE2 even in the presence of LDLR, and did not cluster with LRP in livers of apoE3-Leiden even in the absence of LDLR. Remnants were reconstituted with the three human apoE isoforms. Removal by liver of mApoe-/-/mldlr-/- mice expressing the human LDLR was slightly greater than removal in the previous experiments with apoE3>E2> E3-Leiden. Thus, in vivo, human apoE2 is cleared primarily by LRP, apoE3-Leiden is cleared only by the LDLR, and apoE3 is cleared by both.


Assuntos
Apolipoproteínas E/genética , Quilomícrons/metabolismo , Fígado/metabolismo , Substituição de Aminoácidos , Animais , Apolipoproteína E2 , Apolipoproteína E3 , Apolipoproteínas E/biossíntese , Apolipoproteínas E/sangue , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Proteínas Relacionadas a Receptor de LDL/sangue , Camundongos , Camundongos Transgênicos , RNA Mensageiro/sangue , Receptores de LDL/sangue , Receptores de LDL/genética
6.
J Biol Chem ; 279(43): 45085-92, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15304490

RESUMO

Endothelial lipase (EL) expression correlates inversely with circulating high density lipoprotein (HDL) cholesterol levels in genetic mouse models, and human genetic variation in this locus has been linked to differences in HDL cholesterol levels. These data suggest a role for EL in the development of atherosclerotic vascular disease. To investigate this possibility, LIPG-null alleles were bred onto the apoE knockout background, and the homozygous double knockout animals were characterized. Both apoE knockout and double knockout mice had low HDL cholesterol levels when compared with wild-type mice, but the HDL cholesterol levels of the double knockout mice were higher than those of apoE knockout mice. Atherogenic very low density lipoprotein and intermediate density lipoprotein/low density lipoprotein cholesterol levels of the double knockout mice were also greater than those of the apoE knockout animals. Despite this lipid profile, there was a significant approximately 70% decrease in atherosclerotic disease area in double knockout mice on a regular diet. Immunohistochemistry and protein blot studies revealed increased EL expression in the atherosclerotic aortas of the apoE knockout animals. An observed decrease in macrophage content in vessels lacking EL correlated with ex vivo vascular monocyte adhesion assays, suggesting that this protein can modulate monocyte adhesion and infiltration into diseased tissues. These data suggest that EL may have indirect atherogenic actions in vivo through its effect on circulating HDL cholesterol and direct atherogenic actions through vascular wall processes such as monocyte recruitment and cholesterol uptake.


Assuntos
Apolipoproteínas E/genética , Arteriosclerose/patologia , Lipase/fisiologia , Alelos , Animais , Aorta/patologia , Apolipoproteínas E/fisiologia , Adesão Celular , HDL-Colesterol/metabolismo , Feminino , Homozigoto , Imuno-Histoquímica , Lipase/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/metabolismo
7.
J Lipid Res ; 45(9): 1614-23, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15175355

RESUMO

Both LPL and HL are synthesized in parenchymal cells, are secreted, and bind to endothelial cells. To learn where endothelial lipase (EL) is synthesized in adult animals, the localization of EL in mouse and rat liver was studied by immunohistochemical analysis. Furthermore, to test whether EL could play a role in atherogenesis, the expression of EL in the aorta and liver of apolipoprotein E knockout (EKO) mice was determined. EL in both mouse and rat liver was colocalized with vascular endothelial cells but not with hepatocytes. In contrast, HL was present in both hepatocytes and endothelial cells. By in situ hybridization, EL mRNA was present only in endothelial cells in liver sections. EL was also present at low levels in aorta of normal mice. We fed EKO mice and wild-type mice a variety of diets and determined EL expression in liver and aorta. EKO mice showed significant expression of EL in aorta. EL expression was lower in the liver of EKO mice than in normal mice. Cholesterol feeding decreased EL in liver of both types of mice. In the aorta, EL was higher in EKO than in wild-type mice, and cholesterol feeding had no effect. Together, these data suggest that EL may be upregulated at the site of atherosclerotic lesions and thus could supply lipids to the area.


Assuntos
Apolipoproteínas E/deficiência , Arteriosclerose/enzimologia , Células Endoteliais/enzimologia , Lipase/biossíntese , Lipase/genética , Fígado/enzimologia , Animais , Aorta/patologia , Apolipoproteínas E/genética , Arteriosclerose/genética , Arteriosclerose/patologia , Ácidos e Sais Biliares/farmacologia , Colesterol/farmacologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Gorduras/farmacologia , Imuno-Histoquímica , Hibridização In Situ , Lipase/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos
8.
J Lipid Res ; 45(7): 1266-71, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15102889

RESUMO

HL is synthesized in hepatocytes and functions while bound to heparan sulfate proteoglycans (HSPGs) in sinusoidal endothelial cells. The HL-mediated uptake of lipoprotein requires cell-surface HSPG. The present study tested whether HL plays a role in the production of HSPG. The production of HSPG in Chinese hamster ovary (CHO) cells was determined by measuring the incorporation of (35)SO(4) into PGs. HL-producing HL-CHO cells showed approximately 30% more cellular PG than did wild-type (WT) cells. In contrast, PG production in cells producing a membrane-anchored HL-glycophosphatidylinositol (GPI) that was not bound to HSPG was virtually identical to that in WT cells. When purified HL was added to the WT- or HL-GPI cells, PG production increased significantly to a level similar to that of the HL-secreting cells, suggesting that the binding of HL to HSPG triggered the increased HSPG production. Heparin reduced PG production in HL-producing cells, confirming that PG production is stimulated only when HL is present as a ligand for HSPG. Real-time PCR and Northern blots demonstrated that PG production was significantly reduced in animals lacking HL. Together, these data suggest that the binding of HL to PG on the cell surface exerts a positive feedback on cellular PG production.


Assuntos
Proteoglicanas de Heparan Sulfato/biossíntese , Lipase/fisiologia , Animais , Células CHO , Cricetinae , Retroalimentação Fisiológica , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosilfosfatidilinositóis , Heparina/farmacologia , Ligantes , Lipase/genética , Lipase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ligação Proteica , Ratos , Radioisótopos de Enxofre/metabolismo , Transfecção
9.
J Lipid Res ; 43(11): 1763-9, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12401876

RESUMO

Endothelial lipase (EL) is a newly described member of the triglyceride lipase gene family. It has a considerable molecular homology with lipoprotein lipase (LPL) (44%) and hepatic lipase (HL) (41%). Unlike LPL and HL, this enzyme is synthesized by endothelial cells and functions at the site where it is synthesized. Furthermore, its tissue distribution is different from that of LPL and HL. As a lipase, EL has primarily phospholipase A1 activity. Animals that overexpress EL showed reduced HDL cholesterol levels. Conversely, animals that are deficient in EL showed a marked elevation in HDL cholesterol levels, suggesting that it plays a physiologic role in HDL metabolism. Unlike LPL and HL, EL is located in the vascular endothelial cells and its expression is highly regulated by cytokines and physical forces, suggesting that it may play a role in the development of atherosclerosis. However, there is only a limited amount of information available about this enzyme. Some of our unpublished data in addition to previously published data support the possibility that the enzyme plays a role in the formation of atherosclerotic lesion.


Assuntos
Lipase/metabolismo , Animais , Arteriosclerose/enzimologia , Arteriosclerose/metabolismo , Humanos , Lipase/genética , Lipoproteínas/metabolismo
10.
J Biol Chem ; 277(12): 10037-43, 2002 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-11790777

RESUMO

Although very low density lipoprotein (VLDL) receptor (VLDLr) knockout mice have been reported to have no lipoprotein abnormalities, they develop less adipose tissue than control mice when fed a high calorie diet. Mice that are deficient in adipose tissue expression of lipoprotein lipase (LpL) also have less fat, but only when crossed with ob/ob mice. We hypothesized that the VLDLr, a protein that will bind and transport LpL, is required for optimal LpL actions in vivo and that hypertriglyceridemia due to VLDLr deficiency is exacerbated by either LpL deficiency or VLDL overproduction. Fasted VLDLr knockout (VLDLr0) mice were more hypertriglyceridemic than controls (2-fold greater triglyceride levels). The hypertriglyceridemia due to VLDLr0 was even more evident when VLDLr0 mice were crossed with heterozygous LpL-deficient (LpL1) and human apolipoprotein B (apoB) transgenic mice. This was due to an increase in apoB48-containing VLDL. [(3)H]VLDL turnover studies showed that VLDL-triglyceride clearance in VLDLr0/LpL1 mice was impaired by 50% compared with LpL1 mice. VLDLr0/LpL1 mice had less LpL activity in postheparin plasma, heart, and skeletal muscle. Infection of mice with an adenovirus-expressing receptor-associated protein, an inhibitor of the VLDLr, reduced LpL activity in wild type but not VLDLr0 mice. Therefore, the VLDLr is required for normal LpL regulation in vivo, and the disruption of VLDLr results in hypertriglyceridemia associated with decreased LpL activity.


Assuntos
Lipase Lipoproteica/metabolismo , Receptores de LDL/genética , Receptores de LDL/fisiologia , Tecido Adiposo/metabolismo , Animais , Apolipoproteínas B/metabolismo , Arteriosclerose/sangue , Glicemia/metabolismo , Northern Blotting , Peso Corporal , Cromatografia Líquida de Alta Pressão , Genótipo , Glucose/metabolismo , Hipertrigliceridemia/genética , Immunoblotting , Cinética , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/genética , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/metabolismo , Lipase Lipoproteica/sangue , Lipoproteínas/sangue , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Músculos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Fatores de Tempo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...