Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 40(3): 111077, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858554

RESUMO

Redox-active metal ions are pivotal for rapid metabolism, proliferation, and aggression across cancer types, and this presents metal chelation as an attractive cancer cell-targeting strategy. Here, we identify a metal chelator, KS10076, as a potent anti-cancer drug candidate. A metal-bound KS10076 complex with redox potential for generating hydrogen peroxide and superoxide anions induces intracellular reactive oxygen species (ROS). The elevation of ROS by KS10076 promotes the destabilization of signal transducer and activator of transcription 3, removes aldehyde dehydrogenase isoform 1-positive cancer stem cells, and subsequently induces autophagic cell death. Bioinformatic analysis of KS10076 susceptibility in pan-cancer cells shows that KS10076 potentially targets cancer cells with increased mitochondrial function. Furthermore, patient-derived organoid models demonstrate that KS10076 efficiently represses cancer cells with active KRAS, and fluorouracil resistance, which suggests clinical advantages.


Assuntos
Morte Celular Autofágica , Fator de Transcrição STAT3 , Família Aldeído Desidrogenase 1 , Apoptose , Linhagem Celular Tumoral , Quelantes , Humanos , Células-Tronco Neoplásicas/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo , Superóxidos/metabolismo
2.
J Neuroinflammation ; 14(1): 183, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886715

RESUMO

BACKGROUND: Despite the use of combination antiretroviral therapy for the treatment of HIV-1 infection, cognitive impairments remain prevalent due to persistent viral replication and associated brain inflammation. Primary cellular targets of HIV-1 in the brain are macrophages, microglia, and to a certain extent astrocytes which in response to infection release inflammatory markers, viral proteins [i.e., glycoprotein 120 (gp120)] and exhibit impaired glutamate uptake. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily of ligand-activated transcription factors. Compelling evidence suggests that PPARγ exerts anti-inflammatory properties in neurological disorders. The goal of this study was to examine the role of PPARγ in the context of HIV-1ADA gp120-induced inflammation in vitro, in primary cultures of rat astrocytes and microglia, and in vivo, in a rodent model of HIV-1ADA gp120-associated brain inflammation. METHODS: Primary mixed cultures of rat astrocytes and microglia were treated with PPARγ agonists (rosiglitazone or pioglitazone) and exposed to HIV-1ADA gp120. Inflammatory cytokines and indicator of oxidative stress response (TNFα, IL-1ß, iNOS) were measured using qPCR, and glutamate transporter (GLT-1) was quantified by immunoblotting. In vivo, rats were administered an intracerebroventricular injection of HIV-1ADA gp120 and an intraperitoneal injection of PPARγ agonist (rosiglitazone) or co-administration with PPARγ antagonist (GW9662). qPCR and immunoblotting analyses were applied to measure inflammatory markers, GLT-1 and PPARγ. RESULTS: In primary mixed cultures of rat astrocytes and microglia, HIV-1ADA gp120 exposure resulted in a significant elevation of inflammatory markers and a decrease in GLT-1 expression which were significantly attenuated with rosiglitazone or pioglitazone treatment. Similarly, in vivo, treatment with rosiglitazone reversed the gp120-mediated inflammatory response and downregulation of GLT-1. Furthermore, we demonstrated that the anti-inflammatory effects of PPARγ agonist rosiglitazone were mediated through inhibition of NF-κB. CONCLUSION: Our data demonstrate that gp120 can induce an inflammatory response and decrease expression of GLT-1 in the brain in vitro and in vivo. We have also successfully shown that these effects can be reversed by treatment with PPARγ agonists, rosiglitazone or pioglitazone. Together our data suggest that targeting PPARγ signaling may provide an option for preventing/treating HIV-associated brain inflammation.


Assuntos
Complexo AIDS Demência/metabolismo , PPAR gama/metabolismo , Animais , Encefalite/metabolismo , HIV-1 , Masculino , Pioglitazona , Ratos , Ratos Wistar , Rosiglitazona , Tiazolidinedionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...