Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(10): 12853-12864, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427782

RESUMO

The asymmetric monochlorination strategy not only effectively addresses the steric issues in conventional dichlorination but also enables the development of promising acceptor units and semiregioregular polymers. Herein, monochlorinated isoindigo (1CIID) is successfully designed and synthesized by selectively introducing single chlorine (Cl) atoms. Furthermore, the 1CIID copolymerizes with two donor counterparts, centrosymmetric 2,2'-bithiophene (2T) and axisymmetric 4,7-di(thiophen-2-yl)benzo[1,2,5]thiadiazole (DTBT), forming two polymers, P1CIID-2T and P1CIID-DTBT. These polymers exhibit notable differences in backbone linearity and dipole moments, influenced by the symmetry of their donor counterparts. In particular, P1CIID-2T, which contains a centrosymmetric 2T unit, demonstrates a linear backbone and a significant dipole moment of 10.20 D. These properties contribute to the favorable film morphology of P1CIID-2T, characterized by highly ordered crystallinity in the presence of fifth-order (500) X-ray diffraction peaks. Notably, P1CIID-2T exhibits a significant improvement in molecular alignment under dynamic force, resulting in over 8-fold improvement in the performance of organic field-effect transistor (OFET) devices, with superior electron mobility up to 1.22 cm2 V-1 s-1. This study represents the first synthesis of asymmetric monochlorinated isoindigo-based conjugated polymers, highlighting the potential of asymmetric monochlorination for developing n-type semiconducting polymers. Moreover, our findings provide valuable insights into the relationship between the molecular structure and properties.

2.
ACS Appl Mater Interfaces ; 15(33): 39117-39126, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37551880

RESUMO

Conjugated polymer nanoparticles (CP NPs) that could absorb the first near-infrared (NIR-I) window have emerged as highly desirable therapeutic nanomaterials. Here, a quinoidal-conjugated polymer (QCP), termed PQ, was developed as a novel class of therapeutic agents for photothermal therapy (PTT). Owing to its intrinsic quinoid structure, PQ exhibits molecular planarity and π-electron overlap along the conjugated backbone, endowing it with a narrow band gap, NIR-I absorption, and diradical features. The obtained PQ was coated with a poly(ethylene glycol) (PEG) moiety, affording nanosized and water-dispersed PQ nanoparticles (PQ NPs), which consequently show a high photothermal conversion efficiency (PCE) of 63.2%, good photostability, and apparent therapeutic efficacy for both in vitro and in vivo PTTs under an 808 nm laser irradiation. This study demonstrates that QCPs are promising active agents for noninvasive anticancer therapy using NIR-I light.


Assuntos
Nanopartículas , Fototerapia , Linhagem Celular Tumoral , Polímeros/farmacologia , Polímeros/química , Nanopartículas/uso terapêutico , Nanopartículas/química
3.
Gels ; 9(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36975632

RESUMO

(1) Background: Infections of pathogenic microorganisms can be life-threatening due to delayed healing or even worsening conditions in tissue engineering and regenerative medicine. The excessive presence of reactive oxygen species in damaged and infected tissues causes a negative inflammatory response, resulting in failed healing. Thus, the development of hydrogels with antibacterial and antioxidant abilities for the treatment of infectious tissues is in high demand. (2) Methods: We herein describe the development of green-synthesized silver-composited polydopamine nanoparticles (AgNPs), which are fabricated by the self-assembly of dopamine as a reducing and antioxidant agent in the presence of silver ions. (3) Results: The facile and green-synthesized AgNPs have a nanoscale diameter with mostly spherical shapes, with various shapes coexisting. The particles are stable in an aqueous solution for up to 4 weeks. In addition, remarkable antibacterial activity against Gram-positive and -negative bacterial strains and antioxidant capabilities were evaluated by in vitro assays. When incorporated into biomaterial hydrogels at concentrations above 2 mg L-1, the hydrogels produced powerful antibacterial effects. (4) Conclusions: This study describes a biocompatible hydrogel with antibacterial and antioxidant activities from the introduction of facile and green-synthesized AgNPs as a safer tool for the treatment of damaged tissues.

4.
ACS Omega ; 6(41): 27305-27314, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693151

RESUMO

In this work, we synthesized and characterized two quinoidal small molecules based on benzothiophene modified and original isatin terminal units, benzothiophene quinoidal thiophene (BzTQuT) and quinoidal thiophene (QuT), respectively, to investigate the effect of introducing a fused ring into the termini of quinoidal molecules. Extending the terminal unit of the quinoidal molecule affected the extension of π-electron delocalization and decreased the bond length alternation, which led to the downshifting of the collective Raman band and dramatically lowering the band gap. Organic field-effect transistor (OFET) devices in neat BzTQuT films showed p-type transport behavior with low hole mobility, which was ascribed to the unsuitable film morphology for charge transport. By blending with an amorphous insulating polymer, polystyrene, and poly(2-vinylnaphthalene), an OFET based on a BzTQuT film annealed at 150 °C exhibited improved mobility up to 0.09 cm2 V-1 s-1. This work successfully demonstrated that the extension of terminal groups into the quinoidal structure should be an effective strategy for constructing narrow band gap and high charge transporting organic semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...