Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Exp Mol Med ; 56(2): 264-272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297158

RESUMO

Osteoclasts are the principal cells that efficiently resorb bone. Numerous studies have attempted to reveal the molecular pathways leading to the differentiation and activation of osteoclasts to improve the treatment and prevention of osteoporosis and other bone-destructive diseases. While the cumulative knowledge of osteoclast regulatory molecules, such as receptor activator of nuclear factor-kB ligand (RANKL) and nuclear factor of activated T cells 1 (NFATc1), contributes to the understanding of the developmental progression of osteoclasts, little is known about how the discrete steps of osteoclastogenesis modify osteoclast status but not the absolute number of osteoclasts. The regulatory mechanisms involved in osteoclast maturation but not those involved in differentiation deserve special attention due to their potential use in establishing a more effective treatment strategy: targeting late-phase differentiation while preserving coupled bone formation. Recent studies have shed light on the molecules that govern late-phase osteoclast differentiation and maturation, as well as the metabolic changes needed to adapt to shifting metabolic demands. This review outlines the current understanding of the regulation of osteoclast differentiation, as well as osteoclast metabolic adaptation as a differentiation control mechanism. Additionally, this review introduces molecules that regulate the late-phase osteoclast differentiation and thus minimally impact coupled bone formation.


Assuntos
Doenças Ósseas , Osteoporose , Humanos , Osteoclastos , Diferenciação Celular , Osteogênese
2.
Cells ; 12(15)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37566044

RESUMO

Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup of the cadherin superfamily. Pcdh7 has been revealed to control osteoclast differentiation by regulating Rho-family small GTPases, RhoA and Rac1, through its intracellular SET binding domain. However, the mechanisms by which small GTPases are regulated downstream of Pcdh7 remain unclear. Here, we demonstrate that protein phosphatase 2A (PP2A)-mediated dephosphorylation of Glycogen synthase kinase-3ß (GSK3ß) is required for Pcdh7-dependent activation of RhoA during osteoclast differentiation. Pcdh7-deficient (Pcdh7-/-) cells showed impaired PP2A activity, despite their normal expression of PP2A. GSK3ß, whose activity is regulated by its inhibitory phosphorylation at Ser9, was dephosphorylated during osteoclast differentiation in a Pcdh7-dependent manner. Inhibition of protein phosphatase by okadaic acid reduced dephosphorylation of GSK3ß in Pcdh7+/+ cells, while activation of PP2A by DT-061 rescued impaired dephosphorylation of GSK3ß in Pcdh7-/- cells. Inhibition of GSK3ß by AR-A014418 inhibited RANKL-induced RhoA activation and osteoclast differentiation in Pcdh7+/+ cells. On the other hand, DT-061 treatment rescued impaired RhoA activation and RANKL-induced osteoclast differentiation in Pcdh7-/- cells. Taken together, these results demonstrate that PP2A dephosphorylates GSK3ß and thereby activates it in a Pcdh7-dependent manner, which is required for activation of small GTPase RhoA and proper osteoclast differentiation.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Osteoclastos , Osteoclastos/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Protocaderinas , Glicogênio Sintase Quinase 3 beta/metabolismo , Caderinas/metabolismo
3.
J Control Release ; 360: 796-809, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437850

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer-related death and has a poor 5-year overall survival. The superior therapeutic benefits of combination or co-administration of drugs as intraperitoneal chemotherapy have increased interest in developing strategies to deliver chemotherapeutic agents to patients safely. In this study, we prepared a gel comprising the thermosensitive poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) polymer and gemcitabine (GEM), which is currently used as the primary chemotherapy for PDAC and rapamycin (RAPA), a mammalian TOR (mTOR) inhibitor, to deliver the drug through intraperitoneal injection. We performed in vitro cytotoxicity experiments to verify the synergistic effects of the two drugs at different molar ratios and characterized the physicochemical properties of the GEM, RAPA, and GEM/RAPA-loaded thermosensitive PLGA-PEG-PLGA gels, hereafter referred to as (g(G), g(R), and g(GR)), respectively. The g(GR) comprising PLGA-PEG-PLGA polymer (25% w/v) and GEM and RAPA at a molar ratio of 11:1 showed synergism and was optimized. An in vitro cytotoxicity assay was performed by treating Panc-1-luc2 tumor spheroids with g(G), g(R), or g(GR). The g(GR) treatment group showed a 2.75-fold higher inhibition rate than the non-treated (NT) and vehicle-treated groups. Furthermore, in vivo drug release assay in mice by intraperitoneal injection of g(G), g(R), or g(GR) showed a more rapid release rate of GEM than RAPA, similar to the in vitro release pattern. The drugs in the gel were released faster in vivo than in vitro and degraded in 48 h. In addition, g(GR) showed the highest anti-tumor efficacy with no toxicity to mice. These results provide evidence for the safety and efficacy of g(GR) for intraperitoneal drug delivery. This study will assist in developing and clinically administering topical anti-cancer formulations.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Camundongos , Animais , Sirolimo , Poliglactina 910 , Polietilenoglicóis/química , Neoplasias Pancreáticas/tratamento farmacológico , Hidrogéis/química , Linhagem Celular Tumoral , Mamíferos , Neoplasias Pancreáticas
4.
Bone Res ; 11(1): 17, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928396

RESUMO

Osteoclasts are primary bone-resorbing cells, and receptor-activated NF-kB ligand (RANKL) stimulation is the key driver of osteoclast differentiation. During late-stage differentiation, osteoclasts become multinucleated and enlarged (so-called "maturation"), suggesting their need to adapt to changing metabolic demands and a substantial increase in size. Here, we demonstrate that immunoglobulin superfamily 11 (IgSF11), which is required for osteoclast differentiation through an association with the postsynaptic scaffolding protein PSD-95, regulates osteoclast differentiation by controlling the activity of pyruvate kinase M isoform 2 (PKM2). By using a system that directly induces the activation of IgSF11 in a controlled manner, we identified PKM2 as a major IgSF11-induced tyrosine-phosphorylated protein. IgSF11 activates multiple Src family tyrosine kinases (SFKs), including c-Src, Fyn, and HcK, which phosphorylate PKM2 and thereby inhibit PKM2 activity. Consistently, IgSF11-deficient cells show higher PKM2 activity and defective osteoclast differentiation. Furthermore, inhibiting PKM2 activities with the specific inhibitor Shikonin rescues the impaired osteoclast differentiation in IgSF11-deficient cells, and activating PKM2 with the specific activator TEPP46 suppresses osteoclast differentiation in wild-type cells. Moreover, PKM2 activation further suppresses osteoclastic bone loss without affecting bone formation in vivo. Taken together, these results show that IgSF11 controls osteoclast differentiation through PKM2 activity, which is a metabolic switch necessary for optimal osteoclast maturation.

5.
Elife ; 122023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779854

RESUMO

Colony-stimulating factor 1 (Csf1) is an essential growth factor for osteoclast progenitors and an important regulator for bone resorption. It remains elusive which mesenchymal cells synthesize Csf1 to stimulate osteoclastogenesis. We recently identified a novel mesenchymal cell population, marrow adipogenic lineage precursors (MALPs), in bone. Compared to other mesenchymal subpopulations, MALPs expressed Csf1 at a much higher level and this expression was further increased during aging. To investigate its role, we constructed MALP-deficient Csf1 CKO mice using AdipoqCre. These mice had increased femoral trabecular bone mass, but their cortical bone appeared normal. In comparison, depletion of Csf1 in the entire mesenchymal lineage using Prrx1Cre led to a more striking high bone mass phenotype, suggesting that additional mesenchymal subpopulations secrete Csf1. TRAP staining revealed diminished osteoclasts in the femoral secondary spongiosa region of Csf1 CKOAdipoq mice, but not at the chondral-osseous junction nor at the endosteal surface of cortical bone. Moreover, Csf1 CKOAdipoq mice were resistant to LPS-induced calvarial osteolysis. Bone marrow cellularity, hematopoietic progenitors, and macrophages were also reduced in these mice. Taken together, our studies demonstrate that MALPs synthesize Csf1 to control bone remodeling and hematopoiesis.


Assuntos
Medula Óssea , Osteoclastos , Camundongos , Animais , Osteoclastos/metabolismo , Medula Óssea/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Osso e Ossos/metabolismo , Hematopoese
6.
Bone ; 159: 116353, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35181574

RESUMO

Since the receptor activator of nuclear factor-kappa B ligand (RANKL), its cognate receptor activator of nuclear factor-kappa B (RANK), and the decoy receptor osteoprotegerin (OPG) were discovered, a number of studies have uncovered the crucial role of the RANKL-RANK-OPG pathway in controlling the key aspect of bone homeostasis, the immune system, inflammation, cancer, and other systems under pathophysiological condition. These findings have expanded the understanding of the multifunctional biology of the RANKL-RANK-OPG pathway and led to the development of therapeutic potential targeting this pathway. The successful development and application of anti-RANKL antibody in treating diseases causing bone loss validates the utility of therapeutic approaches based on the modulation of this pathway. Moreover, recent studies have demonstrated the involvement of the RANKL-RANK pathway in osteoblast differentiation and bone formation, shedding light on the RANKL-RANK dual signaling in coupling bone resorption and bone formation. In this review, we will summarize the current understanding of the RANKL-RANK-OPG system in the context of the bone and the immune system as well as the impact of this pathway in disease conditions, including cancer development and metastasis.


Assuntos
Reabsorção Óssea , Ligante RANK , Biologia , Reabsorção Óssea/patologia , Osso e Ossos/patologia , Humanos , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo
7.
Sci Transl Med ; 14(630): eabj0324, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35108061

RESUMO

Skin is composed of diverse cell populations that cooperatively maintain homeostasis. Up-regulation of the nuclear factor κB (NF-κB) pathway may lead to the development of chronic inflammatory disorders of the skin, but its role during the early events remains unclear. Through analysis of single-cell RNA sequencing data via iterative random forest leave one out prediction, an explainable artificial intelligence method, we identified an immunoregulatory role for a unique paired related homeobox-1 (Prx1)+ fibroblast subpopulation. Disruption of Ikkb-NF-κB under homeostatic conditions in these fibroblasts paradoxically induced skin inflammation due to the overexpression of C-C motif chemokine ligand 11 (CCL11; or eotaxin-1) characterized by eosinophil infiltration and a subsequent TH2 immune response. Because the inflammatory phenotype resembled that seen in human atopic dermatitis (AD), we examined human AD skin samples and found that human AD fibroblasts also overexpressed CCL11 and that perturbation of Ikkb-NF-κB in primary human dermal fibroblasts up-regulated CCL11. Monoclonal antibody treatment against CCL11 was effective in reducing the eosinophilia and TH2 inflammation in a mouse model. Together, the murine model and human AD specimens point to dysregulated Prx1+ fibroblasts as a previously unrecognized etiologic factor that may contribute to the pathogenesis of AD and suggest that targeting CCL11 may be a way to treat AD-like skin lesions.


Assuntos
Dermatite Atópica , Animais , Inteligência Artificial , Dermatite Atópica/patologia , Fibroblastos/patologia , Imunidade , Camundongos , NF-kappa B/metabolismo , Pele/patologia
8.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884920

RESUMO

Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup of the cadherin superfamily. Although the cell-intrinsic role of Pcdh7 in osteoclast differentiation has been demonstrated, the molecular mechanisms of Pcdh7 regulating osteoclast differentiation remain to be determined. Here, we demonstrate that Pcdh7 contributes to osteoclast differentiation by regulating small GTPases, RhoA and Rac1, through its SET oncoprotein binding domain. Pcdh7 is associated with SET along with RhoA and Rac1 during osteoclast differentiation. Pcdh7-deficient (Pcdh7-/-) cells showed abolished RANKL-induced RhoA and Rac1 activation, and impaired osteoclast differentiation. Impaired osteoclast differentiation in Pcdh7-/- cells was restored by retroviral transduction of full-length Pcdh7 but not by a Pcdh7 mutant that lacks SET binding domain. The direct crosslink of the Pcdh7 intracellular region induced the activation of RhoA and Rac1, which was not observed when Pcdh7 lacks the SET binding domain. Additionally, retroviral transduction of the constitutively active form of RhoA and Rac1 completely restored the impaired osteoclast differentiation in Pcdh7-/- cells. Collectively, these results demonstrate that Pcdh7 controls osteoclast differentiation by regulating RhoA and Rac1 activation through the SET binding domain.


Assuntos
Diferenciação Celular/fisiologia , Neuropeptídeos/metabolismo , Osteoclastos/citologia , Protocaderinas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Camundongos Mutantes , Osteoclastos/metabolismo , Domínios Proteicos , Protocaderinas/genética
9.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577625

RESUMO

Accumulating evidence indicates a link between diabetes and cancer. Selective estrogen receptor modulators (SERMs) may increase diabetes risk via antiestrogen effects. This study investigated incident diabetes risk of SERM treatment and its effects on metastatic cancer and death prevention in breast cancer survivors. This retrospective cohort study included female patients with early-stage breast cancer, treated with or without SERMs, between 2008 and 2020 in a tertiary care hospital in Korea. Four propensity score-matched comparison pairs were designed: SERM use versus non-use, long-term use (≥1500 days) versus non-use, tamoxifen use versus non-use, and toremifene use versus non-use; then, logistic regression analysis was performed for risk analysis. SERMs in general were not associated with an elevated risk of diabetes; however, when used for ≥1500 days, SERMs-especially toremifene-substantially increased diabetes risk in breast cancer patients (OR 1.63, p = 0.048). Meanwhile, long-term SERM treatment was effective at preventing metastatic cancer (OR 0.20, p < 0.001) and death (OR 0.13, p < 0.001). SERM treatment, albeit generally safe and effective, may increase diabetes risk with its long-term use in women with breast cancer. Further studies are required to verify the association between toremifene treatment and incident diabetes.

10.
Nat Commun ; 12(1): 2258, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859201

RESUMO

Selenoproteins containing selenium in the form of selenocysteine are critical for bone remodeling. However, their underlying mechanism of action is not fully understood. Herein, we report the identification of selenoprotein W (SELENOW) through large-scale mRNA profiling of receptor activator of nuclear factor (NF)-κΒ ligand (RANKL)-induced osteoclast differentiation, as a protein that is downregulated via RANKL/RANK/tumour necrosis factor receptor-associated factor 6/p38 signaling. RNA-sequencing analysis revealed that SELENOW regulates osteoclastogenic genes. SELENOW overexpression enhances osteoclastogenesis in vitro via nuclear translocation of NF-κB and nuclear factor of activated T-cells cytoplasmic 1 mediated by 14-3-3γ, whereas its deficiency suppresses osteoclast formation. SELENOW-deficient and SELENOW-overexpressing mice exhibit high bone mass phenotype and osteoporosis, respectively. Ectopic SELENOW expression stimulates cell-cell fusion critical for osteoclast maturation as well as bone resorption. Thus, RANKL-dependent repression of SELENOW regulates osteoclast differentiation and blocks osteoporosis caused by overactive osteoclasts. These findings demonstrate a biological link between selenium and bone metabolism.


Assuntos
Remodelação Óssea/genética , Osteoclastos/fisiologia , Osteogênese/genética , Osteoporose/genética , Selenoproteína W/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Diferenciação Celular/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Osteoporose/patologia , Ligante RANK/metabolismo , RNA-Seq , Selenoproteína W/genética , Transdução de Sinais/fisiologia , Fator 6 Associado a Receptor de TNF/metabolismo
12.
J Bone Miner Metab ; 39(1): 54-63, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33438173

RESUMO

The receptor activator of nuclear factor kappa-B ligand (RANKL)-RANK-osteoprotegerin (OPG) system is critical to bone homeostasis, but genetically deficient mouse models have revealed important roles in the immune system as well. RANKL-RANK-OPG is particularly important to T cell biology because of its organogenic control of thymic development and secondary lymphoid tissues influence central T cell tolerance and peripheral T cell function. RANKL-RANK-OPG cytokine-receptor interactions are often controlled by regulation of expression of RANKL on developing T cells, which interacts with RANK expressed on some lymphoid tissue cells to stimulate key downstream signaling pathways that affect critical tuning functions of the T cell compartment, like cell survival and antigen presentation. Activation of peripheral T cells is regulated by RANKL-enhanced dendritic cell survival, and dysregulation of the RANKL-RANK-OPG system in this context is associated with loss of T cell tolerance and autoimmune disease. Given its broader implications for immune homeostasis and osteoimmunology, it is critical to further understand how the RANKL-RANK-OPG system operates in T cell biology.


Assuntos
Ativação Linfocitária/imunologia , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Linfócitos T/imunologia , Animais , Diferenciação Celular , Humanos
13.
Mol Cells ; 44(1): 1-12, 2021 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-33335079

RESUMO

The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is the master transcriptional regulator in adipogenesis. PPARγ forms a heterodimer with another nuclear receptor, retinoid X receptor (RXR), to form an active transcriptional complex, and their transcriptional activity is tightly regulated by the association with either coactivators or corepressors. In this study, we identified T-cell death-associated gene 51 (TDAG51) as a novel corepressor of PPARγ-mediated transcriptional regulation. We showed that TDAG51 expression is abundantly maintained in the early stage of adipogenic differentiation. Forced expression of TDAG51 inhibited adipocyte differentiation in 3T3-L1 cells. We found that TDAG51 physically interacts with PPARγ in a ligand-independent manner. In deletion mutant analyses, large portions of the TDAG51 domains, including the pleckstrin homology-like, glutamine repeat and proline-glutamine repeat domains but not the proline-histidine repeat domain, are involved in the interaction with the region between residues 140 and 506, including the DNA binding domain, hinge, ligand binding domain and activation function-2 domain, in PPARγ. The heterodimer formation of PPARγ-RXRα was competitively inhibited in a ligand-independent manner by TDAG51 binding to PPARγ. Thus, our data suggest that TDAG51, which could determine adipogenic cell fate, acts as a novel negative regulator of PPARγ by blocking RXRα recruitment to the PPARγ-RXRα heterodimer complex in adipogenesis.


Assuntos
Adipogenia , PPAR gama/metabolismo , Multimerização Proteica , Receptor X Retinoide alfa/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Fatores de Transcrição/genética , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Morte Celular , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Camundongos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/metabolismo
14.
J Clin Invest ; 131(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33206630

RESUMO

Bone is maintained by coupled activities of bone-forming osteoblasts/osteocytes and bone-resorbing osteoclasts. Alterations in this relationship can lead to pathologic bone loss such as osteoporosis. It is well known that osteogenic cells support osteoclastogenesis via production of RANKL. Interestingly, our recently identified bone marrow mesenchymal cell population-marrow adipogenic lineage precursors (MALPs) that form a multidimensional cell network in bone-was computationally demonstrated to be the most interactive with monocyte-macrophage lineage cells through high and specific expression of several osteoclast regulatory factors, including RANKL. Using an adipocyte-specific Adipoq-Cre to label MALPs, we demonstrated that mice with RANKL deficiency in MALPs have a drastic increase in trabecular bone mass in long bones and vertebrae starting from 1 month of age, while their cortical bone appears normal. This phenotype was accompanied by diminished osteoclast number and attenuated bone formation at the trabecular bone surface. Reduced RANKL signaling in calvarial MALPs abolished osteolytic lesions after LPS injections. Furthermore, in ovariectomized mice, elevated bone resorption was partially attenuated by RANKL deficiency in MALPs. In summary, our studies identified MALPs as a critical player in controlling bone remodeling during normal bone metabolism and pathological bone loss in a RANKL-dependent fashion.


Assuntos
Medula Óssea , Remodelação Óssea , Reabsorção Óssea , Osteoclastos , Adipócitos/metabolismo , Adipócitos/patologia , Adiponectina/genética , Adiponectina/metabolismo , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Camundongos , Camundongos Transgênicos , Osteoclastos/metabolismo , Osteoclastos/patologia , Ligante RANK/genética , Ligante RANK/metabolismo
15.
BMB Rep ; 53(9): 472-477, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32635982

RESUMO

Osteoclasts are hematopoietic-derived cells that resorb bone. They are required to maintain proper bone homeostasis and skeletal strength. Although osteoclast differentiation depends on receptor activator of NF-κB ligand (RANKL) stimulation, additional molecules further contribute to osteoclast maturation. Here, we demonstrate that protocadherin-7 (Pcdh7) regulates formation of multinucleated osteoclasts and contributes to maintenance of bone homeostasis. We found that Pcdh7 expression is induced by RANKL stimulation, and that RNAi-mediated knockdown of Pcdh7 resulted in impaired formation of osteoclasts. We generated Pcdh7-deficient mice and found increased bone mass due to decreased bone resorption but without any defect in bone formation. Using an in vitro culture system, it was revealed that formation of multinucleated osteoclasts is impaired in Pcdh7-deficient cultures, while no apparent defects were observed in differentiation and function of Pcdh7-deficient osteoblasts. Taken together, these results reveal an osteoclast cell-intrinsic role for Pcdh7 in maintaining bone homeostasis. [BMB Reports 2020; 53(9): 472-477].


Assuntos
Caderinas/metabolismo , Osteoblastos/metabolismo , Animais , Caderinas/deficiência , Caderinas/genética , Diferenciação Celular , Homeostase/genética , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteogênese/genética , Protocaderinas
16.
J Immunol ; 205(3): 760-766, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32540996

RESUMO

P2X5 is a member of the P2X purinergic receptor family of ligand-gated cation channels and has recently been shown to regulate inflammatory bone loss. In this study, we report that P2X5 is a protective immune regulator during Listeria monocytogenes infection, as P2X5-deficient mice exhibit increased bacterial loads in the spleen and liver, increased tissue damage, and early (within 3-6 d) susceptibility to systemic L. monocytogenes infection. Whereas P2X5-deficient mice experience normal monocyte recruitment in response to L. monocytogenes, P2X5-deficient bone marrow-derived macrophages (BMMs) exhibit defective cytosolic killing of L. monocytogenes We further showed that P2X5 is required for L. monocytogenes-induced inflammasome activation and IL-1ß production and that defective L. monocytogenes killing in P2X5-deficient BMMs is substantially rescued by exogenous IL-1ß or IL-18. Finally, in vitro BMM killing and in vivo L. monocytogenes infection experiments employing either P2X7 deficiency or extracellular ATP depletion suggest that P2X5-dependent anti-L. monocytogenes immunity is independent of the ATP-P2X7 inflammasome activation pathway. Together, our findings elucidate a novel and specific role for P2X5 as a critical mediator of protective immunity.


Assuntos
Inflamassomos/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Receptores Purinérgicos P2X5/deficiência , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/imunologia , Animais , Suscetibilidade a Doenças , Inflamassomos/genética , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Listeriose/genética , Listeriose/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Monócitos/patologia , Receptores Purinérgicos P2X5/imunologia
17.
Int J Mol Sci ; 21(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290171

RESUMO

Differentiation of osteoclasts, which are specialized multinucleated macrophages capable of bone resorption, is driven primarily by receptor activator of NF-κB ligand (RANKL). Additional signaling from cell surface receptors, such as cell adhesion molecules (CAMs), is also required for osteoclast maturation. Previously, we have demonstrated that immunoglobulin superfamily 11 (IgSF11), a member of the immunoglobulin-CAM (IgCAM) family, plays an important role in osteoclast differentiation through association with the scaffold protein postsynaptic density protein 95 (PSD-95). Here, we demonstrate that the osteoclast-expressed CAM CD44 can compensate for IgSF11 deficiency when cell-cell interaction conditions are suboptimal by associating with PSD-95. Impaired osteoclast differentiation in IgSF11-deficient (IgSF11-/-) cultures was rescued by antibody-mediated stimulation of CD44 or by treatment with low-molecular-weight hyaluronan (LMW-HA), a CD44 ligand. Biochemical analysis revealed that PSD-95, which is required for osteoclast differentiation, associates with CD44 in osteoclasts regardless of the presence or absence of IgSF11. RNAi-mediated knockdown of PSD-95 abrogated the effects of either CD44 stimulation or LMW-HA treatment on osteoclast differentiation, suggesting that CD44, similar to IgSF11, is functionally associated with PSD-95 during osteoclast differentiation. Taken together, these results reveal that CD44 can compensate for IgSF11 deficiency in osteoclasts through association with PSD-95.


Assuntos
Moléculas de Adesão Celular/deficiência , Diferenciação Celular/genética , Proteína 4 Homóloga a Disks-Large/genética , Receptores de Hialuronatos/genética , Imunoglobulinas/deficiência , Osteoclastos/citologia , Osteoclastos/metabolismo , Animais , Contagem de Células , Linhagem Celular , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Knockout
18.
Bone Res ; 8: 5, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32047704

RESUMO

Osteoclasts are multinucleated, giant cells derived from myeloid progenitors. While receptor activator of NF-κB ligand (RANKL) stimulation is the primary driver of osteoclast differentiation, additional signaling further contributes to osteoclast maturation. Here, we demonstrate that immunoglobulin superfamily member 11 (IgSF11), whose expression increases during osteoclast differentiation, regulates osteoclast differentiation through interaction with postsynaptic density protein 95 (PSD-95), a scaffold protein with multiple protein interaction domains. IgSF11 deficiency in vivo results in impaired osteoclast differentiation and bone resorption but no observed defect in bone formation. Consequently, IgSF11-deficient mice exhibit increased bone mass. Using in vitro osteoclast culture systems, we show that IgSF11 functions through homophilic interactions. Additionally, we demonstrate that impaired osteoclast differentiation in IgSF11-deficient cells is rescued by full-length IgSF11 and that the IgSF11-PSD-95 interaction requires the 75 C-terminal amino acids of IgSF11. Our findings reveal a critical role for IgSF11 during osteoclast differentiation and suggest a role for IgSF11 in a receptor- and signal transduction molecule-containing protein complex.

19.
ACS Appl Mater Interfaces ; 12(3): 3936-3944, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31912738

RESUMO

Droplet microfluidics has enabled a significant reduction in reaction volume and analysis time, which in turn has led to transformative advances in high-capacity screening and assays. By arranging droplets into a static array, it is possible to monitor dynamic events that occur within these microchambers over an extended period of time, facilitating the identification of rare events and cell types. In many instances, it is highly desirable to recover a small number of droplets that contain unique analytes or cells for further analyses; however, few techniques allow for selective recovery of droplets from such an array without using a complex network of physical valves, which also require a large number of control units external to the microfluidic device. In this report, we present photoactivated selective release of droplets from a static microwell array enabled by a photoresponsive polymer layer integrated into the microfluidic device. This photoresponsive layer is placed in between a microwell array that traps a large number of droplets and a PDMS slab with or without a top flow channel that can be used for recovery. By using focused light, the photoresponsive layer can either be punctured for release-up recovery or induced to create a bubble by local heating to selectively push-down release droplets. We show that the photoresponsive layer is optically transparent within the visible spectrum and thus does not interfere with optical observation of droplets. The type of photoacoustic dye and the physical properties of the photoresponsive layer can be engineered to induce either puncture of the photoresponsive layer or pushing of droplets out of the microwell arrays with low thermal impact on the droplets. We believe that the photoresponsive layer will have a broad impact in the field of soft lithography-based microfluidic devices for various applications including photoresponsive valves as well as high-throughput single-cell sequencing.


Assuntos
Microfluídica/métodos , Técnicas Fotoacústicas/métodos , Análise Serial de Tecidos/métodos , Animais , Linhagem Celular , Indóis/química , Luz , Camundongos , Microfluídica/instrumentação , Técnicas Fotoacústicas/instrumentação , Análise Serial de Tecidos/instrumentação
20.
FEBS Lett ; 594(1): 144-152, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31432503

RESUMO

Purinergic signaling plays important roles in bone. P2X5, a member of ligand-gated ion channel receptors, has been demonstrated to regulate osteoclast maturation. However, the molecular mechanism of P2X5-mediated osteoclast regulation remains unclear. Here, we identified methylosome protein 50 (MEP50), a critical cofactor of the protein arginine methyltransferase 5 (PRMT5), as a P2X5-associating molecule. RNAi-mediated knockdown of MEP50 results in decreased formation of mature osteoclasts. MEP50 associates with P2X5, and this association requires the C-terminal intracellular region of P2X5. Additionally, impaired maturation of P2X5-deficient osteoclasts could be restored by transduction of full-length P2X5, but not a C-terminal deletion mutant of P2X5. These results indicate that P2X5 associates with MEP50 and suggest a link between the PRMT5 complex and P2X5 signaling in osteoclast maturation.


Assuntos
Diferenciação Celular , Osteoclastos/metabolismo , Receptores Purinérgicos P2X5/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Células HEK293 , Humanos , Camundongos , Osteoclastos/citologia , Ligação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Receptores Purinérgicos P2X5/química , Transdução de Sinais , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...