Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 7(7): 932-941, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34155372

RESUMO

Plant molecular farming, that is, using plants as hosts for production of therapeutic proteins and high-value compounds, has gained substantial interest in recent years. Chloroplasts in particular are an attractive subcellular compartment for expression of foreign genes. Here, we present a new method for transgene introduction and expression in chloroplasts that, unlike classically used approaches, does not require transgene insertion into the chloroplast genome. Instead, the transgene is amplified as a physically independent entity termed a 'minichromosome'. Amplification occurs in the presence of a helper protein that initiates the replication process via recognition of specific sequences flanking the transgene, resulting in accumulation of extremely high levels of transgene DNA. Importantly, we demonstrate that such amplified transgenes serve as a template for foreign protein expression, are maintained stably during plant development and are maternally transmitted to the progeny. These findings indicate that the minichromosome-based approach is an attractive tool for transgene expression in chloroplasts and for organelle genome engineering.


Assuntos
Biotecnologia/métodos , Replicação do DNA , Engenharia Genética/métodos , Genomas de Plastídeos , Nicotiana/genética , Melhoramento Vegetal/métodos , Transformação Genética , Plantas Geneticamente Modificadas
2.
PLoS Genet ; 14(4): e1007317, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29608566

RESUMO

Homologous recombination is central to repair DNA double-strand breaks, either accidently arising in mitotic cells or in a programed manner at meiosis. Crossovers resulting from the repair of meiotic breaks are essential for proper chromosome segregation and increase genetic diversity of the progeny. However, mechanisms regulating crossover formation remain elusive. Here, we identified through genetic and protein-protein interaction screens FIDGETIN-LIKE-1 INTERACTING PROTEIN (FLIP) as a new partner of the previously characterized anti-crossover factor FIDGETIN-LIKE-1 (FIGL1) in Arabidopsis thaliana. We showed that FLIP limits meiotic crossover together with FIGL1. Further, FLIP and FIGL1 form a protein complex conserved from Arabidopsis to human. FIGL1 interacts with the recombinases RAD51 and DMC1, the enzymes that catalyze the DNA strand exchange step of homologous recombination. Arabidopsis flip mutants recapitulate the figl1 phenotype, with enhanced meiotic recombination associated with change in counts of DMC1 and RAD51 foci. Our data thus suggests that FLIP and FIGL1 form a conserved complex that regulates the crucial step of strand invasion in homologous recombination.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Arabidopsis/genética , Recombinação Homóloga , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , ATPases Associadas a Diversas Atividades Celulares/classificação , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/classificação , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/classificação , Proteínas Nucleares/metabolismo , Filogenia , Ligação Proteica , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Técnicas do Sistema de Duplo-Híbrido
3.
Nucleic Acids Res ; 45(4): 1860-1871, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27965412

RESUMO

At meiosis, hundreds of programmed DNA double-strand breaks (DSBs) form and are repaired by homologous recombination. From this large number of DSBs, only a subset yields crossovers (COs), with a minimum of one CO per chromosome pair. All DSBs must be repaired and every recombination intermediate must be resolved to avoid subsequent entanglement and chromosome breakage. The conserved BLM-TOP3α-RMI1 (BTR) complex acts on early and late meiotic recombination intermediates to both limit CO outcome and promote chromosome integrity. In Arabidopsis, the BLM homologues RECQ4A and RECQ4B act redundantly to prevent meiotic extra COs, but recombination intermediates are fully resolved in their absence. In contrast, TOP3α is needed for both processes. Here we show through the characterization of specific mutants that RMI1 is a major anti-CO factor, in addition to being essential to prevent chromosome breakage and entanglement. Further, our findings suggest a specific role of the C-terminal domains of RMI1 and TOP3α, that respectively contain an Oligo Binding domain (OB2) and ZINC finger motifs, in preventing extra-CO. We propose that these domains of TOP3α and RMI1 define a sub-domain of the BTR complex which is dispensable for the resolution of recombination intermediates but crucial to limit extra-COs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Troca Genética , DNA Topoisomerases Tipo I/metabolismo , Meiose , Domínios e Motivos de Interação entre Proteínas , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Transporte/química , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/química , Epistasia Genética , Modelos Biológicos , Mutação , Ligação Proteica , Recombinação Genética , Dedos de Zinco
5.
PLoS Genet ; 11(7): e1005369, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26161528

RESUMO

Meiotic crossovers (COs) generate genetic diversity and are critical for the correct completion of meiosis in most species. Their occurrence is tightly constrained but the mechanisms underlying this limitation remain poorly understood. Here we identified the conserved AAA-ATPase FIDGETIN-LIKE-1 (FIGL1) as a negative regulator of meiotic CO formation. We show that Arabidopsis FIGL1 limits CO formation genome-wide, that FIGL1 controls dynamics of the two conserved recombinases DMC1 and RAD51 and that FIGL1 hinders the interaction between homologous chromosomes, suggesting that FIGL1 counteracts DMC1/RAD51-mediated inter-homologue strand invasion to limit CO formation. Further, depleting both FIGL1 and the previously identified anti-CO helicase FANCM synergistically increases crossover frequency. Additionally, we showed that the effect of mutating FANCM on recombination is much lower in F1 hybrids contrasting from the phenotype of inbred lines, while figl1 mutation equally increases crossovers in both contexts. This shows that the modes of action of FIGL1 and FANCM are differently affected by genomic contexts. We propose that FIGL1 and FANCM represent two successive barriers to CO formation, one limiting strand invasion, the other disassembling D-loops to promote SDSA, which when both lifted, leads to a large increase of crossovers, without impairing meiotic progression.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Troca Genética/genética , DNA Helicases/genética , Meiose/genética , ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ciclo Celular/genética , Reparo do DNA/genética , Variação Genética/genética , Proteínas Associadas aos Microtúbulos , Rad51 Recombinase/genética , Recombinases Rec A/genética , Recombinação Genética
6.
Proc Natl Acad Sci U S A ; 112(15): 4713-8, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825745

RESUMO

Meiotic crossovers (COs) have two important roles, shuffling genetic information and ensuring proper chromosome segregation. Despite their importance and a large excess of precursors (i.e., DNA double-strand breaks, DSBs), the number of COs is tightly regulated, typically one to three per chromosome pair. The mechanisms ensuring that most DSBs are repaired as non-COs and the evolutionary forces imposing this constraint are poorly understood. Here we identified Topoisomerase3α (TOP3α) and the RECQ4 helicases--the Arabidopsis slow growth suppressor 1 (Sgs1)/Bloom syndrome protein (BLM) homologs--as major barriers to meiotic CO formation. First, the characterization of a specific TOP3α mutant allele revealed that, in addition to its role in DNA repair, this topoisomerase antagonizes CO formation. Further, we found that RECQ4A and RECQ4B constitute the strongest meiotic anti-CO activity identified to date, their concomitant depletion leading to a sixfold increase in CO frequency. In both top3α and recq4ab mutants, DSB number is unaffected, and extra COs arise from a normally minor pathway. Finally, both TOP3α and RECQ4A/B act independently of the previously identified anti-CO Fanconi anemia of complementation group M (FANCM) helicase. This finding shows that several parallel pathways actively limit CO formation and suggests that the RECQA/B and FANCM helicases prevent COs by processing different substrates. Despite a ninefold increase in CO frequency, chromosome segregation was unaffected. This finding supports the idea that CO number is restricted not because of mechanical constraints but likely because of the long-term costs of recombination. Furthermore, this work demonstrates how manipulating a few genes holds great promise for increasing recombination frequency in plant-breeding programs.


Assuntos
Proteínas de Arabidopsis/genética , Troca Genética , DNA Helicases/genética , DNA Topoisomerases Tipo I/genética , Meiose/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Helicases/classificação , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Mutação , Filogenia , Plantas Geneticamente Modificadas , Recombinação Genética
7.
PLoS Genet ; 5(9): e1000654, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19763177

RESUMO

Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Ensaios de Triagem em Larga Escala/métodos , Meiose/genética , Recombinação Genética , Alelos , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Pareamento Cromossômico/genética , Cromossomos de Plantas/genética , Ciclinas/química , Ciclinas/metabolismo , Quebras de DNA de Cadeia Dupla , Éxons/genética , Genes de Plantas , Íntrons/genética , Dados de Sequência Molecular , Mutação/genética , Transporte Proteico , Recombinases/metabolismo , Alinhamento de Sequência
8.
Biotechnol Lett ; 29(10): 1591-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17565445

RESUMO

The moss, Physcomitrella patens, is a novel tool in plant functional genomics due to its exceptionally high gene targeting efficiency that is so far unique for plants. To determine if this high gene targeting efficiency is exclusive to P. patens or if it is a common feature to mosses, we estimated gene-targeting efficiency in another moss, Ceratodon purpureus. We transformed both mosses with replacement vectors corresponding to the adenine phosphoribosyl transferase (APT) reporter gene. We achieved a gene targeting efficiency of 20.8% for P. patens and 1.05% for C. purpureus. Our findings support the hypothesis that efficient gene targeting could be a general mechanism of Bryophyte transformation.


Assuntos
Briófitas/genética , Marcação de Genes/métodos , Transformação Genética , Adenina/análogos & derivados , Adenina/farmacologia , Adenina Fosforribosiltransferase/genética , Adenina Fosforribosiltransferase/metabolismo , Modelos Genéticos , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...