Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(10): 2887-2905, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37134146

RESUMO

To evaluate electrostatics interactions, molecular dynamics (MD) simulations rely on Particle Mesh Ewald (PME), an O(Nlog(N)) algorithm that uses Fast Fourier Transforms (FFTs) or, alternatively, on O(N) Fast Multipole Methods (FMM) approaches. However, the FFTs low scalability remains a strong bottleneck for large-scale PME simulations on supercomputers. On the opposite, FFT-free FMM techniques are able to deal efficiently with such systems but they fail to reach PME performances for small- to medium-size systems, limiting their real-life applicability. We propose ANKH, a strategy grounded on interpolated Ewald summations and designed to remain efficient/scalable for any size of systems. The method is generalized for distributed point multipoles, and so for induced dipoles, which makes it suitable for high performance simulations using new generation polarizable force fields toward exascale computing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...