Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(7): 9414-9427, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38334708

RESUMO

Owing to their superior stability compared to those of conventional molecular dyes, as well as their high UV-visible absorption capacity, which can be tuned to cover the majority of the solar spectrum through size adjustment, quantum dot (QD)/TiO2 composites are being actively investigated as photosensitizing components for diverse solar energy conversion systems. However, the conversion efficiencies and durabilities of QD/TiO2-based solar cells and photocatalytic systems are still inferior to those of conventional systems that employ organic/inorganic components as photosensitizers. This is because of the poor adsorption of QDs onto the TiO2 surface, resulting in insufficient interfacial interactions between the two. The mechanism underlying QD adsorption on the TiO2 surface and its relationship to the photosensitization process remain unclear. In this study, we established that the surface characteristics of the TiO2 semiconductor and the QDs (i.e., surface defects of the metal oxide and the surface structure of the QD core) directly affect the QD adsorption capacity by TiO2 and the interfacial interactions between the QDs and TiO2, which relates to the photosensitization process from the photoexcited QDs to TiO2 (QD* → TiO2). The interfacial interaction between the QDs and TiO2 is maximized when the shape/thickness-modulated triangular QDs are composited with defect-rich anatase TiO2. Comprehensive investigations through photodynamic analyses and surface evaluation using X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and photocatalysis experiments collectively validate that tuning the surface properties of QDs and modulating the TiO2 defect concentration can synergistically amplify the interfacial interaction between the QDs and TiO2. This augmentation markedly improved the efficiency of photoinduced electron transfer from the photoexcited QDs to TiO2, resulting in significantly increased photocatalytic activity of the QD/TiO2 composite. This study provides the first in-depth characterization of the physical adhesion of QDs dispersed on a heterogeneous metal-oxide surface. Furthermore, the prepared QD/TiO2 composite exhibits exceptional adsorption stability, resisting QD detachment from the TiO2 surface over a wide pH range (pH = 2-12) in aqueous media as well as in nonaqueous solvents during two months of immersion. These findings can aid the development of practical QD-sensitized solar energy conversion systems that require the long-term stability of the photosensitizing unit.

2.
Nanoscale ; 15(43): 17473-17481, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37861429

RESUMO

Fluorescent microbeads (MBs) are widely used as next-generation biosensors for the detection of target chemicals at highly sensitive concentrations, and for imaging and tracking in vitro and in vivo. However, most known methods for producing fluorescent MBs require complicated multistep processes that result in low production rates. In this study, we report a method for fabricating micrometer-sized quantum dot microbeads (QD-MBs) using a microfluidic chip and specially designed QD photoresist (QD-PR). This on-demand lab-on-a-chip method yielded monodispersed QD-MBs ranging from 1.89 to 33 µm with a coefficient of variation of less than 10%. The size distribution of the fabricated QD-MBs was Gaussian with a peak around the mean diameter and a spread of sizes around the peak. Compared with nanoscale QDs, the fabricated QD-MBs showed no emission loss. The full-width at half-maximum of the emission peak of the QD-MBs was smaller than that of the colloidal QDs, indicating a more uniform distribution and a higher density of QDs within the MB structure. In addition, we investigated the microfluidic flow regime that yielded the most uniform and controllable QD-MB. The MBs in the dripping regime were spherical and monodisperse, with an excellent particle size distribution. In this study, we present a simple and effective strategy for producing QD-MBs with controllable sizes, which can be crucial in diverse fields such as biosensing, drug delivery, and imaging.

3.
ACS Appl Mater Interfaces ; 14(45): 50718-50730, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36331558

RESUMO

In this study, a p-type π-conjugated polymer chain, poly(3-hexylthiophene-2,5-diyl) (P3HT), was physically adsorbed onto n-type TiO2 nanoparticles functionalized with a molecular CO2 reduction catalyst, (4,4-Y2-bpy)ReI(CO)3Cl (ReP, Y = CH2PO(OH)2), to generate a new type of P3HT-heterogenized hybrid system (P3HT/TiO2/ReP), and its photosensitizing properties were assessed in a heteroternary system for photochemical CO2 reduction. We found that P3HT immobilization on TiO2 facilitated photoinduced electron transfer (PET) from photoactivated P3HT* to the n-type TiO2 semiconductor via rapid interfacial electron injection (∼65 ps) at the P3HT and TiO2 surface interface (P3HT* → TiO2). With such effective charge separation, the heterogenization of P3HT onto TiO2 resulted in a steady electron supply toward the co-adsorbed Re(I) catalyst, attaining durable catalytic activity with a turnover number (TON) of ∼5300 over an extended time period of 655 h over five consecutive photoreactions, without deformation of the adsorbed P3HT polymer. The long-period structural stability of TiO2-adsorbed P3HT was verified based on a comparative analysis of its photophysical properties before and after 655 h of photolysis. To our knowledge, this conversion activity is the highest reported so far for polymer-sensitized photochemical CO2 reduction systems. This investigation provides insights and design guidelines for photocatalytic systems that utilize organic photoactive polymers as photosensitizing units.

4.
Nanoscale Adv ; 4(4): 1080-1087, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36131767

RESUMO

Quantum dots (QDs) have emerged as an important class of materials for diverse applications such as solid-state lighting, energy conversion, displays, biomedicine, and plasmonics due to their excellent photonic properties and durability. Soft lithography, inkjet printing, nanoimprinting, and polymer deep-pen lithography are primary lithography techniques employed to implement micro-patterns with QDs, however, there are limited reports on QD photolithography using conventional photolithography processes suitable for mass production. This study reports a QD photolithography technique using a custom-developed QD photoresist made of an organic-inorganic hybrid coating layer. Using this QD photoresist, various QD micro-patterns, including red or green micro lines, RGB color filters for smartphone displays at 340 ppi, and atypical micro logo patterns of the Korea University, were successfully fabricated. Furthermore, various process parameters were developed for the QD photolithography with this custom QD photoresist, and the optical properties of the QD films were also investigated. To demonstrate its applicability in contemporary smartphone displays, the color coordinates of the QD films were compared to those of the BT.2020 standard. The chromaticity of the QD photoresist in CIE 1931 color space covered 98.7% of the NTSC (1987) area while providing more expansive color space. Overall, the QD photoresist and its photolithography techniques reported in this study hold great promise in various fields of QD-based applications, including bio-labeling, optical detectors, and solar cells.

5.
ACS Appl Mater Interfaces ; 6(10): 7491-7, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24779525

RESUMO

In this work, Au@Cu2O core-shell nanoparticles (NPs) were synthesized by simple solution route and applied for CO sensing applications. Au@Cu2O core-shell NPs were formed by the deposition of 30-60 nm Cu2O shell layer on Au nanorods (NRs) having 10-15 nm width and 40-60 nm length. The morphology of Au@Cu2O core-shell NPs was tuned from brick to spherical shape by tuning the pH of the solution. In the absence of Au NRs, cubelike Cu2O NPs having ∼200 nm diameters were formed. The sensor having Au@Cu2O core-shell layer exhibited higher CO sensitivity compared to bare Cu2O NPs layer. Tuning of morphology of Au@Cu2O core-shell NPs from brick to spherical shape significantly lowered the air resistance. Transition from p- to n-type response was observed for all devices below 150 °C. It was demonstrated that performance of sensor depends not only on the electronic sensitization of Au NRs but also on the morphology of the Au@Cu2O core-shell NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...