Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(11): 2697-2706, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38447081

RESUMO

CLCF fluoride/proton antiporters move fluoride ions out of bacterial cells, leading to fluoride resistance in these bacteria. However, many details about their operating mechanisms remain unclear. Here, we report a combined quantum-mechanical/molecular-mechanical (QM/MM) study of a CLCF homologue from Enterococci casseliflavus (Eca), in accord with the previously proposed windmill mechanism. Our multiscale modeling sheds light on two critical steps in the transport cycle: (i) the external gating residue E118 pushing a fluoride in the external binding site into the extracellular vestibule and (ii) an incoming fluoride reconquering the external binding site by forcing out E118. Both steps feature competitions for the external binding site between the negatively charged carboxylate of E118 and the fluoride. Remarkably, the displaced E118 by fluoride accepts a proton from the nearby R117, initiating the next transport cycle. We also demonstrate the importance of accurate quantum descriptions of fluoride solvation. Our results provide clues to the mysterious E318 residue near the central binding site, suggesting that the transport activities are unlikely to be disrupted by the glutamate interacting with a well-solvated fluoride at the central binding site. This differs significantly from the structurally similar CLC chloride/proton antiporters, where a fluoride trapped deep in the hydrophobic pore causes the transporter to be locked down. A free-energy barrier of 10-15 kcal/mol was estimated via umbrella sampling for a fluoride ion traveling through the pore to repopulate the external binding site.


Assuntos
Antiporters , Prótons , Antiporters/química , Antiporters/metabolismo , Fluoretos/química , Modelos Moleculares , Proteínas de Membrana Transportadoras/metabolismo , Cloretos/química , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Transporte de Íons
2.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38313280

RESUMO

Synaptotagmin 7 (Syt-7) is part of the synaptotagmin protein family that regulates exocytotic lipid membrane fusion. Among the family, Syt-7 stands out by its membrane binding strength and stabilization of long-lived membrane fusion pores. Given that Syt-7 vesicles form long-lived fusion pores, we hypothesize that its interactions with the membrane stabilize the specific curvatures, thicknesses, and lipid compositions that support a metastable fusion pore. Using all-atom molecular dynamics simulations and FRET-based assays of Syt-7's membrane-binding C2 domains (C2A and C2B), we found that Syt-7 C2 domains sequester anionic lipids, are sensitive to cholesterol, thin membranes, and generate lipid membrane curvature by two competing, but related mechanisms. First, Syt-7 forms strong electrostatic contacts with the membrane, generating negative curvature stress. Second, Syt-7's calcium binding loops embed in the membrane surface, acting as a wedge to thin the membrane and induce positive curvature stress. These curvature mechanisms are linked by the protein insertion depth as well as the resulting protein tilt. Simplified quantitative models of the curvature-generating mechanisms link simulation observables to their membrane-reshaping effectiveness.

3.
Protein Sci ; 33(1): e4850, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038838

RESUMO

Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among the vertebrate synaptotagmin-like protein (Slp) family. Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.


Assuntos
Proteínas de Ligação ao Cálcio , Glicoproteínas de Membrana , Animais , Humanos , Filogenia , Proteínas de Ligação ao Cálcio/metabolismo , Eletricidade Estática , Glicoproteínas de Membrana/química , Sinaptotagmina I/metabolismo , Sequência de Aminoácidos , Proteínas do Tecido Nervoso/química , Estrutura Terciária de Proteína , Cálcio/metabolismo
4.
J Chem Inf Model ; 63(16): 5142-5152, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37585651

RESUMO

NarK nitrate/nitrite antiporter imports nitrate (a mineral form of the essential element nitrogen) into the cell and exports nitrite (a metabolite that can be toxic in high concentrations) out of the cell. However, many details about its operational mechanism remain poorly understood. In this work, we performed steered molecular dynamics simulations of anion translocations and quantum-chemistry model calculations of the binding sites to study the wild-type NarK protein and its R89K mutant. Our results shed light on the importance of the two strictly conserved binding-site arginine residues (R89 and R305) and two glycine-rich signature motifs (G164-M176 and G408-F419) in anion movement through the pore. We also observe conformational changes of the protein during anion migration. For the R89K mutant, our quantum calculations reveal a competition for a proton between the anion (especially nitrite) and lysine, which can potentially slow down or even trap the anion in the pore. Our findings provide a possible explanation for the striking experimental finding that the arginine-to-lysine mutation, despite preserving the charge, impedes or abolishes anion transport in such mutants of NarK and other similar nitrate/nitrite exchangers.


Assuntos
Proteínas de Transporte de Ânions , Nitritos/metabolismo , Nitratos/metabolismo , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Mutação
5.
bioRxiv ; 2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37502952

RESUMO

Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among vertebrate synaptotagmin-like proteins (Slps). Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.

6.
J Biol Chem ; 296: 100159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33277360

RESUMO

Synaptotagmin-like protein 4 (Slp-4), also known as granuphilin, is a Rab effector responsible for docking secretory vesicles to the plasma membrane before exocytosis. Slp-4 binds vesicular Rab proteins via an N-terminal Slp homology domain, interacts with plasma membrane SNARE complex proteins via a central linker region, and contains tandem C-terminal C2 domains (C2A and C2B) with affinity for phosphatidylinositol-(4,5)-bisphosphate (PIP2). The Slp-4 C2A domain binds with low nanomolar apparent affinity to PIP2 in lipid vesicles that also contain background anionic lipids such as phosphatidylserine but much weaker when either the background anionic lipids or PIP2 is removed. Through computational and experimental approaches, we show that this high-affinity membrane binding arises from concerted interaction at multiple sites on the C2A domain. In addition to a conserved PIP2-selective lysine cluster, a larger cationic surface surrounding the cluster contributes substantially to the affinity for physiologically relevant lipid compositions. Although the K398A mutation in the lysine cluster blocks PIP2 binding, this mutated protein domain retains the ability to bind physiological membranes in both a liposome-binding assay and MIN6 cells. Molecular dynamics simulations indicate several conformationally flexible loops that contribute to the nonspecific cationic surface. We also identify and characterize a covalently modified variant that arises through reactivity of the PIP2-binding lysine cluster with endogenous bacterial compounds and binds weakly to membranes. Overall, multivalent lipid binding by the Slp-4 C2A domain provides selective recognition and high-affinity docking of large dense core secretory vesicles to the plasma membrane.


Assuntos
Colesterol/química , Lipossomos/química , Fosfatidilcolinas/química , Fosfatidilinositol 4,5-Difosfato/química , Proteínas de Transporte Vesicular/química , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Colesterol/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ligação Proteica , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
J Gen Physiol ; 150(6): 783-807, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29794152

RESUMO

Synaptotagmin (Syt) proteins comprise a 17-member family, many of which trigger exocytosis in response to calcium. Historically, most studies have focused on the isoform Syt-1, which serves as the primary calcium sensor in synchronous neurotransmitter release. Recently, Syt-7 has become a topic of broad interest because of its extreme calcium sensitivity and diversity of roles in a wide range of cell types. Here, we review the known and emerging roles of Syt-7 in various contexts and stress the importance of its actions. Unique functions of Syt-7 are discussed in light of recent imaging, electrophysiological, and computational studies. Particular emphasis is placed on Syt-7-dependent regulation of synaptic transmission and neuroendocrine cell secretion. Finally, based on biochemical and structural data, we propose a mechanism to link Syt-7's role in membrane fusion with its role in subsequent fusion pore expansion via strong calcium-dependent phospholipid binding.


Assuntos
Exocitose , Sinaptotagminas/metabolismo , Animais , Cálcio/metabolismo , Humanos , Fusão de Membrana , Vesículas Secretórias/metabolismo , Sinaptotagminas/química , Sinaptotagminas/genética
8.
Mol Biol Cell ; 29(7): 834-845, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29444959

RESUMO

In chromaffin cells, the kinetics of fusion pore expansion vary depending on which synaptotagmin isoform (Syt-1 or Syt-7) drives release. Our recent studies have shown that fusion pores of granules harboring Syt-1 expand more rapidly than those harboring Syt-7. Here we sought to define the structural specificity of synaptotagmin action at the fusion pore by manipulating the Ca2+-binding C2B module. We generated a chimeric Syt-1 in which its C2B Ca2+-binding loops had been exchanged for those of Syt-7. Fusion pores of granules harboring a Syt-1 C2B chimera with all three Ca2+-binding loops of Syt-7 (Syt-1:7C2B123) exhibited slower rates of fusion pore expansion and neuropeptide cargo release relative to WT Syt-1. After fusion, this chimera also dispersed more slowly from fusion sites than WT protein. We speculate that the Syt-1:7 C2B123 and WT Syt-1 are likely to differ in their interactions with Ca2+ and membranes. Subsequent in vitro and in silico data demonstrated that the chimera exhibits a higher affinity for phospholipids than WT Syt-1. We conclude that the affinity of synaptotagmin for the plasma membrane, and the rate at which it releases the membrane, contribute in important ways to the rate of fusion pore expansion.

9.
Biochemistry ; 54(37): 5684-95, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26322740

RESUMO

The synaptotagmin (Syt) family of proteins plays an important role in vesicle docking and fusion during Ca(2+)-induced exocytosis in a wide variety of cell types. Its role as a Ca(2+) sensor derives primarily from its two C2 domains, C2A and C2B, which insert into anionic lipid membranes upon binding Ca(2+). Syt isoforms 1 and 7 differ significantly in their Ca(2+) sensitivity; the C2A domain from Syt7 binds Ca(2+) and membranes much more tightly than the C2A domain from Syt1, at least in part because of greater contributions from the hydrophobic effect. While the structure and membrane activity of Syt1 have been extensively studied, the structural origins of differences between Syt1 and Syt7 are unknown. This study used site-directed spin labeling and electron paramagnetic resonance spectroscopy to determine depth parameters for the Syt7 C2A domain, for comparison to analogous previous measurements with the Syt1 C2A domain. In a novel approach, the membrane docking geometry of both Syt1 and Syt7 C2A was modeled by mapping depth parameters onto multiple molecular dynamics-simulated structures of the Ca(2+)-bound protein. The models reveal membrane penetration of Ca(2+) binding loops 1 (CBL1) and 3 (CBL3), and membrane binding is more sensitive to mutations in CBL3. On average, Syt7 C2A inserts more deeply into the membrane than Syt1 C2A, although depths vary among the different structural models. This observation provides a partial structural explanation for the hydrophobically driven membrane docking of Syt7 C2A.


Assuntos
Simulação de Acoplamento Molecular , Sinaptotagminas/química , Lipossomas Unilamelares/química , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Sinaptotagminas/genética
10.
Biochemistry ; 54(37): 5696-711, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26333120

RESUMO

The C2A domain of synaptotagmin 7 (Syt7) is a Ca(2+) and membrane binding module that docks and inserts into cellular membranes in response to elevated intracellular Ca(2+) concentrations. Like other C2 domains, Syt7 C2A binds Ca(2+) and membranes primarily through three loop regions; however, it docks at Ca(2+) concentrations much lower than those required for other Syt C2A domains. To probe structural components of its unusually strong membrane docking, we conducted atomistic molecular dynamics simulations of Syt7 C2A under three conditions: in aqueous solution, in the proximity of a lipid bilayer membrane, and embedded in the membrane. The simulations of membrane-free protein indicate that Syt7 C2A likely binds three Ca(2+) ions in aqueous solution, consistent with prior experimental reports. Upon membrane docking, the outermost Ca(2+) ion interacts directly with lipid headgroups, while the other two Ca(2+) ions remain chelated by the protein. The membrane-bound domain was observed to exhibit large-amplitude swinging motions relative to the membrane surface, varying by up to 70° between a more parallel and a more perpendicular orientation, both during and after insertion of the Ca(2+) binding loops into the membrane. The computed orientation of the membrane-bound protein correlates well with experimental electron paramagnetic resonance measurements presented in the preceding paper ( DOI: 10.1021/acs.biochem.5b00421 ). In particular, the strictly conserved residue Phe229 inserted stably ∼4 Å below the average depth of lipid phosphate groups, providing critical hydrophobic interactions anchoring the domain in the membrane. Overall, the position and orientation of Syt7 C2A with respect to the membrane are consistent with experiments.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Sinaptotagminas/química , Cálcio/química , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Estrutura Terciária de Proteína , Eletricidade Estática
11.
J Phys Chem A ; 119(33): 8884-91, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26200814

RESUMO

There has been growing interest in understanding atmospheric amines in the gas phase and their mass transfer to the aqueous phase because of their potential roles in cloud chemistry, secondary organic aerosol formation, and the fate of atmospheric organics. Temperature-dependent Henry's law constants (KH) of atmospheric amines, a key parameter in atmospheric chemical transport models to account for mass transfer, are mostly unavailable. In this work, we investigated gas-liquid equilibria of five prevalent atmospheric amines, namely 1-propylamine, di-n-propylamine, trimethylamine, allylamine, and 4-methylmorpholine using bubble column technique. We reported effective KH, intrinsic KH, and gas phase diffusion coefficients of these species over a range of temperatures relevant to the lower atmosphere for the first time. The measured KH at 298 K and enthalpy of solution for 1-propylamine, di-n-propylamine, trimethylamine, allylamine, and 4-methylmorpholine are 61.4 ± 4.9 mol L(-1) atm(-1) and -49.0 ± 4.8 kJ mol(-1); 14.5 ± 1.2 mol L(-1) atm(-1) and -72.5 ± 6.8 kJ mol(-1); 8.9 ± 0.7 mol L(-1) atm(-1) and -49.6 ± 4.7 kJ mol(-1); 103.5 ± 10.4 mol L(-1) atm(-1) and -42.7 ± 4.3 kJ mol(-1); and 952.2 ± 114.3 mol L(-1) atm(-1) and -82.7 ± 9.7 kJ mol(-1), respectively. In addition, we evaluated amines' characteristic times to achieve gas-liquid equilibrium for partitioning between gas and aqueous phases. Results show gas-liquid equilibrium can be rapidly established at natural cloud droplets surface, but the characteristic times may be extended substantially at lower temperatures and pHs. Moreover, our findings imply that atmospheric amines are more likely to exist in cloud droplets, and ambient temperature, water content, and pH of aerosols play important roles in their partitioning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...