Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(15): 10946-10955, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37016833

RESUMO

We have investigated the electronic structure of isolated molecules of paracetamol, aspirin and ibuprofen using computational methods and benchmarked the results against valence and core photoelectron spectra. Paracetamol, aspirin and ibuprofen exist as multiple conformers, and we have calculated the free energies and populations of the lowest energy conformers. We find generally good agreement with previous experimental and theoretical structural results. The valence band spectrum of gas phase aspirin has not been reported previously, and we report it and assign the features based on calculations. The effect of acetylation on the frontier orbitals of the parent molecule, salicylic acid, is to increase the ionization potential of the highest occupied molecular orbital (HOMO), and to exchange the energetic ordering of the following two orbitals. The acetyl π bond contributes to the next orbital, which is hybridised with ring π orbitals. The core level spectra of all three molecules are reported and compared with calculations and with the spectra of parent molecules (salicylic acid for aspirin, 4-aminophenol for paracetamol). Observed core ionization energies are in agreement with theory. Although all compounds share a benzene ring, and they also have a number of other chromophores in common, the spectroscopic data indicate chemical diversity, suggesting that their modes of bonding under physiological conditions are likely to be diverse.


Assuntos
Acetaminofen , Ibuprofeno , Aspirina , Espectroscopia Fotoeletrônica , Ácido Salicílico , Gases
2.
ACS Omega ; 7(40): 35924-35932, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36249405

RESUMO

Ammonia borane (H3BNH3) is a promising material for hydrogen storage and release. Dehydrogenation of ammonia borane produces small boron-nitrogen hydrides such as aminoborane (H2BNH2) and iminoborane (HBNH). The present study investigates ammonia borane and its two dehydrogenated products for the first time using calculated photoemission spectra of the valence and core electrons. It is found that a significant decrease in the dipole moment was observed associated with the dehydration from 5.397 D in H3BNH3, to 1.942 D in H2BNH2, and to 0.083 D in HBNH. Such reduction in the dipole moment impacts properties such as hydrogen bonding, dihydrogen bonding, and their spectra. Dehydrogenation of H3BNH3 impacts both the valence and core electronic structure of the boron-nitrogen hydrides. The calculated valence vertical ionization energy (VIE) spectra of the boron-nitrogen hydrides show that valence orbitals dominated by 2p-electrons of B and N atoms exhibit large changes, whereas orbitals dominated by s-electrons, such as (3a14a15a1/3σ4σ5σ) remain less affected. The first ionization energy slightly increases from 10.57 eV for H3BNH3 to 11.29 eV for both unsaturated H2BNH2 and HBNH. In core space, the oxidative dehydrogenation of H3BNH3 affects the core electron binding energy (CEBE) of borane and nitrogen oppositely. The B1s binding energies increase from 194.01 eV in H3BNH3 to 196.93 eV in HBNH, up by 2.92 eV, whereas the N1s binding energies decrease from 408.20 eV in H3BNH3 to 404.88 eV in HBNH, dropped by 3.32 eV.

3.
Molecules ; 26(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808397

RESUMO

After geometry optimization, the electron spectra of indole and four azaindoles are calculated by density functional theory. Available experimental photoemission and excitation data for indole and 7-azaindole are used to compare with the theoretical values. The results for the other azaindoles are presented as predictions to help the interpretation of experimental spectra when they become available.

4.
Artigo em Inglês | MEDLINE | ID: mdl-23659958

RESUMO

The electronic structures of eight non-steroidal anti-inflammatory drugs (NSAIDs) had been studied by UV photoelectron spectroscopy (UPS) and high-level Green's function (GF) calculations. Our UPS data show that the electronic structure influences the measured biological activity of NSAID, but that it is not the dominating factor. The role of electronic structure needs to be considered in conjunction with other factors like steric properties of the COX active site and orientation of relevant residues in the same site.


Assuntos
Anti-Inflamatórios não Esteroides/química , Inibidores de Ciclo-Oxigenase 2/química , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Humanos , Modelos Moleculares , Espectroscopia Fotoeletrônica
5.
J Comput Chem ; 27(2): 163-73, 2006 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-16312016

RESUMO

Spectroscopic constants of the ground and next seven low-lying excited states of diatomic molecules CO, N2, P2, and ScF were computed using the density functional theory SAOP/ATZP model, in conjunction with time-dependent density functional theory (TD-DFT) and a recently developed Slater type basis set, ATZP. Spectroscopic constants, including the equilibrium distances r(e), harmonic vibrational frequency omega(e), vibrational anharmonicity omega(e)x(e), rotational constant B(e), centrifugal distortion constant D(e), the vibration-rotation interaction constant alpha(e), and the vibrational zero-point energy E(n)0 were generated in an effort to establish a reliable database for electron spectroscopy. By comparison with experimental values and a similar model with an established larger Slater-type basis set, et-QZ3P-xD, it was found that this model provides reliably accurate results at reduced computational costs, for both the ground and excited states of the molecules. The over all errors of all eight lowest lying electronic states of the molecules under study using the effective basis set are r(e)(+/-4%), omega(e)(+/-5% mostly without exceeding +/-20%), omega(e)x(e)(+/-5% mostly without exceeding 20%, much more accurate than a previous study on this constant of +/-30%), B(e)(+/-8%), D(e)(+/-10%), alpha(e)(+/-10%), and E(n)0(+/-10%). The accuracy obtained using the ATZP basis set is very competitive to the larger et-QZ3P-xD basis set in particular in the ground electronic states. The overall errors in r(e), omega(e)x(e), and alpha(e) in the ground states were given by +/-0.7, +/-10.1, and +/-8.4%, respectively, using the efficient ATZP basis set, which is competitive to the errors of +/-0.5, +/-9.2, and +/-9.1%, respectively for those constants using the larger et-QZ3P-xD basis set. The latter basis set, however, needs approximately four times of the CPU time on the National Supercomputing Facilities (Australia). Due to the efficiency of the model (TD-DFT, SAOP and ATZP), it will be readily applied to study larger molecular systems.


Assuntos
Monóxido de Carbono/química , Fluoretos/química , Modelos Químicos , Nitrogênio/química , Fósforo/química , Teoria Quântica , Escândio/química , Simulação por Computador , Análise Espectral/normas , Fatores de Tempo
6.
J Comput Chem ; 25(8): 1030-6, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15067678

RESUMO

Even-tempered Slater-type orbital basis sets were developed in 1973, based on total atomic energy optimization. Here, we revisit ET STOs and propose new sets based on past experience and recent computational studies. From preliminary atomic and molecular tests, these sets are shown to be very well balanced and to perform, at lower cost, almost as well as a very large (close to complete) basis set.

7.
J Comput Chem ; 24(13): 1582-91, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12926002

RESUMO

Field-induced polarization (FIP) functions were proposed over two decades ago to improve the accuracy of calculated response properties, and the FIP functions in GTO form for H and C to F were tested on small molecules, with encouraging results. The concept of FIP is now extended to all atoms up to Kr. New simplifying approximations for the description of asymptotic highest occupied atomic orbitals (HOAOs) are introduced in this study. They provide the basis for STO and GTO exponents of a complete set of FIP functions from H to Kr, which are both listed for the convenience of the users. Tests on the polarizabilities of a series of atoms and molecules demonstrate that addition of the FIP basis functions to a series of standard basis sets drastically improves the performance of all these basis sets compared to converged results. Moreover, the byproduct of this study (approximate asymptotic HOAOs) provides information for the construction of accurate basis sets for long-range ground state properties.

8.
J Comput Chem ; 23(3): 394-401, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11908502

RESUMO

We propose a new approach for analysis of Auger electron spectra (AES) of polymers by density functional theory (DFT) calculations with the Slater's transition-state concept. Simulated AES and X-ray photoelectron spectra (XPS) of four polymers [(CH2CH2)n (PE), (CH2CH(CH3))n (PP), (CH2CH(OCH3))n (PVME), and (CH2CH(COCH3))n (PVMK)] by DFT calculations using model dimers are in a good accordance with the experimental ones. The experimental AES of the polymers can be classified in each range of 1s-2p2p, 1s-2s2p, and 1s-2s2s transitions for C KVV and O KVV spectra, and in individual contributions of the functional groups from the theoretical analysis.


Assuntos
Modelos Moleculares , Polímeros/química , Biotecnologia , Elétrons , Análise Espectral , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...