Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(10): 15876-15887, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157678

RESUMO

Integration of metasurfaces and SOI (silicon-on-insulator) chips can leverage the advantages of both metamaterials and silicon photonics, enabling novel light shaping functionalities in planar, compact devices that are compatible with CMOS (complementary metal-oxide-semiconductor) production. To facilitate light extraction from a two-dimensional metasurface vertically into free space, the established approach is to use a wide waveguide. However, the multi-modal feature of such wide waveguides can render the device vulnerable to mode distortion. Here, we propose a different approach, where an array of narrow, single-mode waveguides is used instead of a wide, multi-mode waveguide. This approach tolerates nano-scatterers with a relatively high scattering efficiency, for example Si nanopillars that are in direct contact with the waveguides. Two example devices are designed and numerically studied as demonstrations: the first being a beam deflector that deflects light into the same direction regardless of the direction of input light, and the second being a light-focusing metalens. This work shows a straightforward approach of metasurface-SOI chip integration, which could be useful for emerging applications such as metalens arrays and neural probes that require off-chip light shaping from relatively small metasurfaces.

2.
Opt Express ; 31(2): 1532-1540, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785186

RESUMO

Low-temperature deposited polycrystalline silicon waveguides are emerging as a flexible platform that allows for dense optoelectronic integration. Here, the optical transmission properties of poly-silicon waveguides have been characterized from the near-to-mid-infrared wavelength regime, extending the optical transmission well beyond previous reports in the telecom band. The poly-Si waveguides with a dimension of 3 µm × âˆ¼0.6 µm have been produced from pre-patterned amorphous silicon waveguides that are post-processed through laser melting, reflowing, and crystallization using a highly localized laser induced heat treatment at a wavelength of 532 nm. Low optical transmission losses (<3 dB cm-1) have been observed at 1.55 µm as well as across the wavelength range of 2-2.25 µm, aided by the relatively large waveguide heights that are enabled by the deposition process. The results demonstrate the suitability of low-temperature poly-silicon waveguides to find wide ranging applications within integrated mid-infrared systems.

3.
Sci Rep ; 12(1): 17815, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280699

RESUMO

A new family of phase change material based on antimony has recently been explored for applications in near-IR tunable photonics due to its wide bandgap, manifested as broadband transparency from visible to NIR wavelengths. Here, we characterize [Formula: see text] optically and demonstrate the integration of this phase change material in a silicon nitride platform using a microring resonator that can be thermally tuned using the amorphous and crystalline states of the phase change material, achieving extinction ratios of up to 18 dB in the C-band. We extract the thermo-optic coefficient of the amorphous and crystalline states of the [Formula: see text] to be 3.4 x [Formula: see text] and 0.1 x 10[Formula: see text], respectively. Additionally, we detail the first observation of bi-directional shifting for permanent trimming of a non-volatile switch using continuous wave (CW) laser exposure ([Formula: see text] to 5.1 dBm) with a modulation in effective refractive index ranging from +5.23 x [Formula: see text] to [Formula: see text] x 10[Formula: see text]. This work experimentally verifies optical phase modifications and permanent trimming of [Formula: see text], enabling potential applications such as optically controlled memories and weights for neuromorphic architecture and high density switch matrix using a multi-layer PECVD based photonic integrated circuit.

4.
Opt Lett ; 46(3): 677-680, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528439

RESUMO

Bolometers are thermal detectors widely applied in the mid-infrared (MIR) wavelength range. In an integrated sensing system on chip, a broadband scalable bolometer absorbing the light over the whole MIR wavelength range could play an important role. In this work, we have developed a waveguide-based bolometer operating in the wavelength range of 3.72-3.88 µm on the amorphous silicon (a-Si) platform. Significant improvements in the bolometer design result in a 20× improved responsivity compared to earlier work on silicon-on-insulator (SOI). The bolometer offers 24.62% change in resistance per milliwatt of input power at 3.8 µm wavelength. The thermal conductance of the bolometer is 3.86×10-5W/K, and an improvement as large as 3 orders magnitude may be possible in the future through redesign of the device geometry.

5.
Opt Express ; 28(20): 29192-29201, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114823

RESUMO

We report nonlinear optical characterization of cm-long polycrystalline silicon (poly-Si) waveguides at telecom wavelengths. Laser post-processing of lithographically-patterned amorphous silicon deposited on silica-on-silicon substrates provides low-loss poly-Si waveguides with surface-tension-shaped boundaries. Achieving optical losses as low as 4 dB cm-1 enabled us to demonstrate effects of self-phase modulation (SPM) and two-photon absorption (TPA). Analysis of the spectral broadening and nonlinear losses with numerical modeling reveals the best fit values of the Kerr coefficient n2=4.5×10-18 m W-1 and TPA coefficient ßTPA=9.0×10-12 m2 W-1, which are within the range reported for crystalline silicon. On-chip low-loss poly-Si paves the way for flexible integration of nonlinear components in multi-layered photonic systems.

6.
Biomed Opt Express ; 11(8): 4714-4722, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32923073

RESUMO

Specific proteins and their aggregates form toxic amyloid plaques and neurofibrillary tangles in the brains of people suffering from neurodegenerative diseases such as Alzheimer's and Parkinson's. It is important to study these conformational changes to identify and differentiate these diseases at an early stage so that timely medication is provided to patients. Mid-infrared spectroscopy can be used to monitor these changes by studying the line-shapes and the relative absorbances of amide bands present in proteins. This work focusses on the spectroscopy of the protein, Bovine Serum Albumin as an exemplar, and its aggregates using germanium on silicon waveguides in the 1900-1000 cm-1 (5.3-10.0 µm) spectral region.

7.
Nano Lett ; 20(6): 4256-4263, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32383892

RESUMO

We report on multicolor excitation experiments with color centers in hexagonal boron nitride at cryogenic temperatures. We demonstrate controllable optical switching between bright and dark states of color centers emitting around 2 eV. Resonant, or quasi-resonant, excitation of photoluminescence also pumps the color center, via a two-photon process, into a dark state, where it becomes trapped. Repumping back into the bright state has a step-like spectrum with a defect-dependent threshold between 2.25 and 2.6 eV. This behavior is consistent with photoionization and charging between optically bright and dark states of the defect. Furthermore, a second zero phonon line, detuned by +0.4 eV, is observed in absorption with orthogonal polarization to the emission, evidencing an additional energy level in the color center.

8.
Nat Commun ; 11(1): 1181, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132542

RESUMO

Emerging applications such as the Internet-of-Things and more-electric aircraft require electronics with integrated data storage that can operate in extreme temperatures with high energy efficiency. As transistor leakage current increases with temperature, nanoelectromechanical relays have emerged as a promising alternative. However, a reliable and scalable non-volatile relay that retains its state when powered off has not been demonstrated. Part of the challenge is electromechanical pull-in instability, causing the beam to snap in after traversing a section of the airgap. Here we demonstrate an electrostatically actuated nanoelectromechanical relay that eliminates electromechanical pull-in instability without restricting the dynamic range of motion. It has several advantages over conventional electrostatic relays, including low actuation voltages without extreme reduction in critical dimensions and near constant actuation airgap while the device moves, for improved electrostatic control. With this nanoelectromechanical relay we demonstrate the first high-temperature non-volatile relay operation, with over 40 non-volatile cycles at 200 ∘C.

9.
ACS Appl Mater Interfaces ; 12(8): 9457-9467, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32008314

RESUMO

The ability to manipulate the composition of semiconductor alloys on demand and at nanometer-scale resolutions is a powerful tool that could be exploited to tune key properties such as the electronic band gap, mobility, and refractive index. However, existing methods to modify the composition involve altering the stoichiometry by temporal or spatial modulation of the process parameters during material growth, limiting the scalability and flexibility for device fabrication. Here, we report a laser processing method for localized tailoring of the composition in amorphous silicon-germanium (a-SiGe) nanoscale thin films on silicon substrates, postdeposition, by controlling phase segregation through the scan speed of the laser-induced molten zone. Laser-driven phase segregation at speeds adjustable from 0.1 to 100 mm s-1 allows access to previously unexplored solidification dynamics. The steady-state spatial distribution of the alloy constituents can be tuned directly by setting the laser scan speed constant to achieve indefinitely long Si1-xGex microstructures, exhibiting the full range of compositions (0 < x < 1). To illustrate the potential, we demonstrate a photodetection application by exploiting the laser-written polycrystalline SiGe microstripes, showing tunability of the optical absorption edge over a wavelength range of 200 nm. Our method can be applied to pseudobinary alloys of ternary semiconductors, metals, ceramics, and organic crystals, which have phase diagrams similar to those of SiGe alloys. This study opens a route for direct laser writing of novel devices made of alloy microstructures with tunable composition profiles, including graded-index waveguides and metasurfaces, multispectral photodetectors, full-spectrum solar cells, and lateral heterostructures.

10.
ACS Sens ; 4(7): 1749-1753, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31264410

RESUMO

Protein sensing in biological fluids provides important information to diagnose many clinically relevant diseases. Mid-infrared (MIR) absorption spectroscopy of bovine serum albumin (BSA) is experimentally demonstrated on a germanium on silicon (GOS) waveguide in the 1900-1000 cm-1 (5.3-10.0 µm) region of the MIR. GOS waveguides were shown to guide light up to a wavelength of 12.9 µm. The waveguide absorption spectrum of water, showing molecular bending vibrations, was obtained experimentally and compared with a theoretical model showing good agreement. Measurement of a concentration series of BSA protein in phosphate buffered saline (PBS) from 0.1 mg/mL to 100 mg/mL was performed on the waveguide using filter paper as a flow strip, and the amide I, II, and III peaks were observed and quantified.


Assuntos
Soroalbumina Bovina/análise , Animais , Bovinos , Germânio/química , Silício/química , Espectrofotometria Infravermelho/métodos
11.
Opt Express ; 27(11): 15735-15749, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31163765

RESUMO

We present interlayer slope waveguides, designed to guide light from one level to another in a multi-layer silicon photonics platform. The waveguide is fabricated from hydrogenated amorphous silicon (a-Si:H) film, deposited using hot-wire chemical vapor deposition (HWCVD) at a temperature of 230°C. The interlayer slope waveguide is comprises of a lower level input waveguide and an upper level output waveguide, connected by a waveguide on a slope, with vertical separation to isolate other crossing waveguides. Measured loss of 0.17 dB/slope was obtained for waveguide dimensions of 600 nm waveguide width (w) and 400 nm core thickness (h) at a wavelength of 1550 nm and for transverse electric (TE) mode polarization.

12.
Opt Express ; 27(4): 4462-4470, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876064

RESUMO

We report the fabrication of low-loss, low temperature deposited polysilicon waveguides via laser crystallization. The process involves pre-patterning amorphous silicon films to confine the thermal energy during the crystallization phase, which helps to control the grain growth and reduce the heat transfer to the surrounding media, making it compatible with CMOS integration. Micro-Raman spectroscopy, Secco etching and X-ray diffraction measurements reveal the high crystalline quality of the processed waveguides with the formation of millimeter long crystal grains. Optical losses as low as 5.3 dB/cm have been measured, indicating their suitability for the development of high-density integrated circuits.

13.
Nanoscale ; 8(12): 6659-65, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26948477

RESUMO

The direct growth of graphene on insulating substrate is highly desirable for the commercial scale integration of graphene due to the potential lower cost and better process control. We report a simple, direct deposition of nanocrystalline graphene (NCG) on insulating substrates via catalyst-free plasma-enhanced chemical vapor deposition at relatively low temperature of ∼800 °C. The parametric study of the process conditions that we conducted reveals the deposition mechanism and allows us to grow high quality films. Based on such film, we demonstrate the fabrication of a large-scale array of nanoelectromechanical (NEM) switches using regular thin film process techniques, with no transfer required. Thanks to ultra-low thickness, good uniformity, and high Young's modulus of ∼0.86 TPa, NCG is considered as a promising material for high performance NEM devices. The high performance is highlighted for the NCG switches, e.g. low pull-in voltage <3 V, reversible operations, minimal leakage current of ∼1 pA, and high on/off ratio of ∼10(5).

14.
Nanoscale Res Lett ; 10: 79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852375

RESUMO

In this work, we investigate sensor design approaches for eliminating the effects of parasitic resistance in nanowire and nanoribbon biosensors. Measurements of pH with polysilicon nanoribbon biosensors are used to demonstrate a reduction in sensitivity as the sensor length is reduced. The sensitivity (normalised conductance change) is reduced from 11% to 5.5% for a pH change from 9 to 3 as the sensing window length is reduced from 51 to 11 µm. These results are interpreted using a simple empirical model, which is also used to demonstrate how the sensitivity degradation can be alleviated by a suitable choice of sensor window length. Furthermore, a differential sensor design is proposed that eliminates the detrimental effects of parasitic resistance. Measurements on the differential sensor give a sensitivity of 15%, which is in good agreement with the predicted maximum sensitivity obtained from modeling.

15.
Nanoscale Res Lett ; 9(1): 517, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25276107

RESUMO

This paper studies the effect of atomic layer deposition (ALD) temperature on the performance of top-down ZnO nanowire transistors. Electrical characteristics are presented for 10-µm ZnO nanowire field-effect transistors (FETs) and for deposition temperatures in the range 120°C to 210°C. Well-behaved transistor output characteristics are obtained for all deposition temperatures. It is shown that the maximum field-effect mobility occurs for an ALD temperature of 190°C. This maximum field-effect mobility corresponds with a maximum Hall effect bulk mobility and with a ZnO film that is stoichiometric. The optimized transistors have a field-effect mobility of 10 cm(2)/V.s, which is approximately ten times higher than can typically be achieved in thin-film amorphous silicon transistors. Furthermore, simulations indicate that the drain current and field-effect mobility extraction are limited by the contact resistance. When the effects of contact resistance are de-embedded, a field-effect mobility of 129 cm(2)/V.s is obtained. This excellent result demonstrates the promise of top-down ZnO nanowire technology for a wide variety of applications such as high-performance thin-film electronics, flexible electronics, and biosensing.

16.
J Mech Behav Biomed Mater ; 17: 152-65, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23131790

RESUMO

An improved understanding of bone mechanics is vital in the development of evaluation strategies for patients at risk of bone fracture. The current evaluation approach based on bone mineral density (BMD) measurements lacks sensitivity, and it has become clear that as well as bone mass, bone quality should also be evaluated. The latter includes, among other parameters, the bone matrix material properties, which in turn depend on the hierarchical structural features that make up bone as well as their composition. Optimal load transfer, energy dissipation and toughening mechanisms have, to some extent, been uncovered in bone. Yet, the origin of these properties and their dependence upon the hierarchical structure and composition of bone are largely unknown. Here we investigate load transfer in the osteonal and sub-osteonal levels and the mechanical behaviour of osteonal lamellae and interlamellar areas during loading. Using cantilever-based nanoindentation, in situ microtensile testing during atomic force microscopy (AFM) and digital image correlation (DIC), we report evidence for a previously unknown mechanism. This mechanism transfers load and movement in a manner analogous to the engineered "elastomeric bearing pads" used in large engineering structures. µ-RAMAN microscopy investigations showed compositional differences between lamellae and interlamellar areas. The latter have lower collagen content but an increased concentration of noncollagenous proteins (NCPs). Hence, NC-enriched areas on the microscale might be similarly important for bone failure as ones on the nanoscale. Finally, we managed to capture stable crack propagation within the interlamellar areas in a time-lapsed fashion, proving their significant contribution towards fracture toughness.


Assuntos
Fêmur/citologia , Fêmur/fisiologia , Estresse Mecânico , Suporte de Carga , Animais , Densidade Óssea , Calcificação Fisiológica , Bovinos , Colágeno/metabolismo , Fêmur/metabolismo , Fraturas Ósseas/metabolismo , Fraturas Ósseas/patologia , Fraturas Ósseas/fisiopatologia , Testes de Dureza , Nanotecnologia , Resistência à Tração
17.
Appl Opt ; 45(25): 6507-10, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16912789

RESUMO

We have designed and fabricated a 2D photonic crystal (PhC) asymmetric Mach-Zehnder (M-Z) device structure using W1 channel waveguides oriented along ?K directions in silicon-on-insulator material. The asymmetric structure was designed using a PhC lattice with different filling factors. The asymmetry is obtained as a difference of two periods in the physical path length (DL=2a) between the arms, and it was sufficient to produce a pi phase shift in the region of operation around lambda=1500 nm. The asymmetric M-Z structure is more sensitive than a symmetric M-Z structure to changes in the refractive index and therefore becomes an interesting platform for switching and sensor devices.

18.
Opt Express ; 13(7): 2295-302, 2005 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-19495119

RESUMO

A method for increasing the coupling efficiency between ridge optical waveguides and PhCCRWs is described. This increase is achieved via W1 channel waveguide sections, formed within a two-dimensional triangular lattice photonic crystal using mode-matching. The mode-matching is achieved by low quality-factor modified cavities added to both the input and output ports of the PhCCRW. A three dimensional finite-difference time-domain method has been used to simulate light propagation through the modified PhCCRW. We have fabricated PhCCRWs working at 1.5microm in silicon-on-insulator material. Measurements and simulations show that the overall transmission is improved by a factor of two.

19.
Opt Express ; 12(4): 588-92, 2004 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-19474860

RESUMO

The realisation of a thermo-optically controlled symmetric Mach- Zehnder interferometer switch based on an AlGaAs/GaAs epitaxial waveguide structure operating at wavelengths in the region of lambda = 1550 nm is reported. The device is based on a very compact two-dimensional photonic crystal channel waveguide structure. The measured and simulated transmission spectra for the devices are in good agreement. The Pi-phase shift switching power for the device is as low as 42 mW.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...