Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1408622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881656

RESUMO

Salt stress is a major abiotic stress that affects the growth of Reaumuria soongorica and many psammophytes in the desert areas of Northwest China. However, various Plant Growth-Promoting Rhizobacteria (PGPR) have been known to play an important role in promoting plant growth and alleviating the damaging effects of salt stress. In this study, three PGPR strains belonging to Bacillaceae were isolated from the rhizosphere of Reaumuria soongorica by morphological and molecular identification. All isolated strains exhibited capabilities of producing IAA, solubilizing phosphate, and fixing nitrogen, and were able to tolerate high levels of NaCl stress, up to 8-12%. The results of the pot-based experiment showed that salt (400 mM NaCl) stress inhibited Reaumuria soongorica seedlings' growth performance as well as biomass production, but after inoculation with strains P2, S37, and S40, the plant's height significantly increased by 26.87, 17.59, and 13.36%, respectively (p < 0.05), and both aboveground and root fresh weight significantly increased by more than 2 times compared to NaCl treatment. Additionally, inoculation with P2, S37, and S40 strains increased the content of photosynthetic pigments, proline, and soluble protein in Reaumuria soongorica seedlings under NaCl stress, while reducing the content of malondialdehyde and soluble sugars. Metabolomic analysis showed that strain S40 induces Reaumuria soongorica seedling leaves metabolome reprogramming to regulate cell metabolism, including plant hormone signal transduction and phenylalanine, tyrosine, and tryptophan biosynthesis pathways. Under NaCl stress, inoculation with strain S40 upregulated differential metabolites in plant hormone signal transduction pathways including plant hormones such as auxins (IAA), cytokinins, and jasmonic acid. The results indicate that inoculation with Bacillaceae can promote the growth of Reaumuria soongorica seedlings under NaCl stress and enhance salt tolerance by increasing the content of photosynthetic pigments, accumulating osmoregulatory substances, regulating plant hormone levels This study contributes to the enrichment of PGPR strains capable of promoting the growth of desert plants and has significant implications for the psammophytes growth and development in desert regions, as well as the effective utilization and transformation of saline-alkali lands.

2.
Plants (Basel) ; 12(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896006

RESUMO

This work aims at studying the molecular mechanisms underlying the response of Reaumuria soongorica to salt stress. We used RNA sequencing (RNA-Seq) and Tandem Mass Tag (TMT) techniques to identify differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in R. soongorica leaves treated with 0, 200, and 500 mM NaCl for 72 h. The results indicated that compared with the 0 mM NaCl treatment group, 2391 and 6400 DEGs were identified in the 200 and 500 mM NaCl treatment groups, respectively, while 47 and 177 DEPs were also identified. Transcriptome and proteome association analysis was further performed on R. soongorica leaves in the 0/500 mM NaCl treatment group, and 32 genes with consistent mRNA and protein expression trends were identified. SYP71, CS, PCC13-62, PASN, ZIFL1, CHS2, and other differential genes are involved in photosynthesis, vesicle transport, auxin transport, and other functions of plants, and might play a key role in the salt tolerance of R. soongorica. In this study, transcriptome and proteome association techniques were used to screen candidate genes associated with salt tolerance in R. soongorica, which provides an important theoretical basis for understanding the molecular mechanism of salt tolerance in R. soongorica and breeding high-quality germplasm resources.

3.
Plants (Basel) ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687307

RESUMO

Floristic regions, conventionally established using species distribution patterns, have often overlooked the phylogenetic relationships among taxa. However, how phylogenetic relationships influence the historical interconnections within and among biogeographic regions remains inadequately understood. In this research, we compiled distribution data for seed plants in Gansu, a region of significant biogeographic diversity located in northwestern China.We proposed a novel framework for floristic regions within Gansu, integrating distribution data and phylogenetic relationships of genera-level native seed plants, aiming to explore the relationship between phylogenetic relatedness, taxonomic composition, and regional phylogenetic delineation. We found that (1) phylogenetic relatedness was strongly correlated with the taxonomic composition among floras in Gansu. (2) The southeastern Gansu region showed the lowest level of spatial turnover in both phylogenetic relationships and the taxonomic composition of floristic assemblages across the Gansu region. (3) Null model analyses indicated nonrandom phylogenetic structure across the region, where most areas showed higher phylogenetic turnover than expected given the underlying taxonomic composition between sites. (4) Our results demonstrated a consistent pattern across various regionalization schemes and highlighted the preference for employing the phylogenetic dissimilarity approach in biogeographical regionalization investigations. (5) Employing the phylogenetic dissimilarity approach, we identified nine distinct floristic regions in Gansu that are categorized into two broader geographical units, namely the northwest and southeast. (6) Based on the phylogenetic graphic regions of China across this area.

4.
PeerJ ; 11: e15881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37641597

RESUMO

Hydrogen sulfide (H2S), as an endogenous gas signaling molecule, plays an important role in plant growth regulation and resistance to abiotic stress. This study aims to investigate the mechanism of exogenous H2S on the growth and development of Reaumuria soongorica seedlings under salt stress and to determine the optimal concentration for foliar application. To investigate the regulatory effects of exogenous H2S (donor sodium hydrosulfide, NaHS) at concentrations ranging from 0 to 1 mM on reactive oxygen species (ROS), antioxidant system, and osmoregulation in R. soongorica seedlings under 300 mM NaCl stress. The growth of R. soongorica seedlings was inhibited by salt stress, which resulted in a decrease in the leaf relative water content (LRWC), specific leaf area (SLA), and soluble sugar content in leaves, elevated activity levels of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and accumulated superoxide anion (O2-), proline, malondialdehyde (MDA), and soluble protein content in leaves; and increased L-cysteine desulfhydrase (LCD) activity and endogenous H2S content. This indicated that a high level of ROS was produced in the leaves of R. soongorica seedlings and seriously affected the growth and development of R. soongorica seedlings. The exogenous application of different concentrations of NaHS reduced the content of O 2-, proline and MDA, increased the activity of antioxidant enzymes and the content of osmoregulators (soluble sugars and soluble proteins), while the LCD enzyme activity and the content of endogenous H2S were further increased with the continuous application of exogenous H2S. The inhibitory effects of salt stress on the growth rate of plant height and ground diameter, the LRWC, biomass, and SLA were effectively alleviated. A comprehensive analysis showed that the LRWC, POD, and proline could be used as the main indicators to evaluate the alleviating effect of exogenous H2S on R. soongorica seedlings under salt stress. The optimal concentration of exogenous H2S for R. soongorica seedlings under salt stress was 0.025 mM. This study provides an important theoretical foundation for understanding the salt tolerance mechanism of R. soongorica and for cultivating high-quality germplasm resources.


Assuntos
Sulfeto de Hidrogênio , Tolerância ao Sal , Sulfeto de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio , Plântula , Antioxidantes/farmacologia , Estresse Salino , Peroxidase , Peroxidases , Corantes , Deutério
6.
Plant Signal Behav ; 17(1): 2031782, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35192777

RESUMO

Salinity is a major limiting factor in desert ecosystems, where Reaumuria soongarica is a dominant species. It is crucial to study the growth and physiological response mechanisms of R. soongorica under salt stress for the protection and restoration of the desert ecosystems. However, the effects of salt concentration and stress duration on endogenous hormonal content and photosynthetic efficiency and salt injury index of R. soongorica leaves have not been reported. Currently, there is no systematic evaluation system to determine physiological adaptation strategies of R. soongorica seedlings in response to salt stress. In this study, simulation experiments were performed with NaCl solution mixed with soil. Enzyme-linked immunosorbent assay and LI-6800 portable photosynthesis analyzer were used to measure indole acetic acid (IAA), corn nucleoside hormone (ZR), abscisic acid (ABA), and photosynthesis-related parameters in leaves of R. soongorica seedlings at 0 (24-48 h after salt treatment), 3, 6, and 9 days. At the same time, growth indicators (salt injury index, root-to-shoot ratio), reactive oxygen species content, superoxide dismutase enzyme (SOD) activity, osmolyte content, membrane peroxidation, and leaf pigment content were measured at different salt concentrations and treatment times. Finally, principal component analysis and membership function method were used to comprehensively evaluate the salt tolerance of seedlings. The results showed that treatment with 200 mM NaCl for 3 days significantly increased SOD activity, the content of osmotic adjustment substances (proline, soluble protein), endogenous hormone content (ABA, ZR), root-to-shoot ratio, and Chla/Chlb values but decreased malondialdehyde content (MDA) in the leaves of R. soongorica seedlings. Leaf water content (LRWC), net photosynthetic rate (Pn), transpiration rate (Tr), water use efficiency (WUE), and IAA content in R. soongorica seedlings were lower than those in the control, when exposed to 400 and 500 mM NaCl solutions. Finally, the principal component analysis revealed endogenous hormone content and antioxidant enzyme activity to be useful for the comprehensive evaluation of salt tolerance in R. soongorica seedlings. The R. soongorica seedlings showed the strongest salt tolerance when exposed to 200 mM NaCl for 3 days. This study provides a theoretical foundation for gene mining and breeding of salt-tolerant species in the future.


Assuntos
Plântula , Tamaricaceae , Plântula/metabolismo , Tolerância ao Sal , Ecossistema , Cloreto de Sódio/farmacologia , Tamaricaceae/metabolismo , Fotossíntese/fisiologia , Antioxidantes/metabolismo , Água/metabolismo , Superóxido Dismutase/metabolismo , Hormônios/metabolismo , Hormônios/farmacologia , Estresse Fisiológico
7.
Sci Rep ; 12(1): 2539, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169191

RESUMO

Soil salinity can severely restrict plant growth. Yet Reaumuria soongorica can tolerate salinity well. However, large-scale proteomic studies of this plant's response to salinity have yet to reported. Here, R. soongorica seedlings (4 months old) were used in an experiment where NaCl solutions simulated levels of soil salinity stress. The fresh weight, root/shoot ratio, leaf relative conductivity, proline content, and total leaf area of R. soongorica under CK (0 mM NaCl), low (200 mM NaCl), and high (500 mM NaCl) salt stress were determined. The results showed that the proline content of leaves was positively correlated with salt concentration. With greater salinity, the plant fresh weight, root/shoot ratio, and total leaf area increased initially but then decreased, and vice-versa for the relative electrical conductivity of leaves. Using iTRAQ proteomic sequencing, 47 177 136 differentially expressed proteins (DEPs) were identified in low-salt versus CK, high-salt versus control, and high-salt versus low-salt comparisons, respectively. A total of 72 DEPs were further screened from the comparison groupings, of which 34 DEPs increased and 38 DEPs decreased in abundance. These DEPs are mainly involved in translation, ribosomal structure, and biogenesis. Finally, 21 key DEPs (SCORE value ≥ 60 points) were identified as potential targets for salt tolerance of R. soongolica. By comparing the protein structure of treated versus CK leaves under salt stress, we revealed the key candidate genes underpinning R. soongolica's salt tolerance ability. This works provides fresh insight into its physiological adaptation strategy and molecular regulatory network, and a molecular basis for enhancing its breeding, under salt stress conditions.


Assuntos
Adaptação Fisiológica , Proteoma/metabolismo , Tolerância ao Sal , Tamaricaceae/metabolismo , Estresse Fisiológico
8.
Sci Rep ; 10(1): 15891, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985612

RESUMO

Suitable reference genes can be used to calibrate the error in quantitative real-time PCR (qPCR) experiments, making the results more credible. However, there are no reference genes suitable for multiple species and under different experimental conditions. Nitraria tangutorum Bobr. is a typical plant native to desert areas. It is drought-resistant, saline-alkali resistant, extreme temperatures-resistant, and has strong adaptability. To date, the importance of this germplasm has not been sufficiently understood; therefore, it is still unclear which genes can be used as reference genes to calibrate qPCR data of N. tangutorum. In this study we analyzed the expression levels of 10 candidate reference genes (ACT, GAPDH, TUA, TUB, CYP, UBC, His, PP2A, HSP, and EF1-α) in N. tangutorum seedlings under a series of experimental conditions, including in different organs (root, stem, and leaf) and under abiotic stresses (salt, drought, heat, and cold) and hormone stimuli (abscisic acid) by qPCR. Three software programs (geNorm, NormFinder, and BestKeeper) were used to evaluate the expression stability of the ten genes. Comprehensive analysis showed that EF1-α and His had the best expression stability, whereas HSP was the least suitable as a reference gene. The expression profile of NtCER7, a gene related to the regulation of cuticular wax biosynthesis in N. tangutorum, verified the accuracy of the experimental results. Based on this study, we recommend EF1-α and His as suitable reference genes for N. tangutorum. This paper provides the first data on stable reference genes in N. tangutorum, which will be beneficial to studying the gene expression of N. tangutorum and other Nitraria species in the future.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Magnoliopsida/genética , Proteínas de Plantas/genética , Expressão Gênica , Perfilação da Expressão Gênica , Genes Essenciais , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...