Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Chem Commun (Camb) ; 60(71): 9530-9533, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39145466

RESUMO

A durable and efficient hydrophobic/superoleophilic MIL-88A(Fe)@sponge (MS) with high throughput was fabricated via the dip-coating technique. Its adsorption capacities for pump oil, peanut oil, and CCl4 were 32.13 g g-1, 34.85 g g-1, and 34.25 g g-1, respectively. The hydrophobic surface of MS has excellent chemical resistance and physical stability in harsh environments.

2.
Nat Commun ; 15(1): 7208, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174565

RESUMO

Catalytic peroxymonosulfate (PMS) activation processes don't solely rely on electron transfer from dominant metal centers due to the complicated composition and interface environment of catalysts. Herein the synthesis of a cobalt based metal-organic framework containing polyvanadate [V4O12]4- cluster, Co2(V4O12)(bpy)2 (bpy = 4,4'-bipyridine), is presented. The catalyst demonstrates superior degradation activity toward various micropollutants, with higher highest occupied molecular orbital (HOMO), via nonradical attack. The X-ray absorption spectroscopy and density functional theory (DFT) calculations demonstrate that Co sites act as both PMS trapper and electron donor. In situ spectral characterizations and DFT calculations reveal that the terminal oxygen atoms in the [V4O12]4- electron sponge could interact with the terminal hydrogen atoms in PMS to form hydrogen bonds, promoting the generation of SO5* intermediate via both dynamic pull and direct electron transfer process. Further, Co2(V4O12)(bpy)2 exhibits long-term water purification ability, up to 40 h, towards actual wastewater discharged from an ofloxacin production factory. This work not only presents an efficient catalyst with an electron sponge for water environmental remediation via nonradical pathway, but also provides fundamental insights into the Fenton-like reaction mechanism.

3.
Nanotechnology ; 35(45)2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39121872

RESUMO

In order to predict the single particle irradiation of tunnel field effect transistor (TFET) devices, a deep learning algorithm network model was built to predict the key characterization parameters of the single particle transient. Computer aided design (TCAD) technique is used to study the influence of single particle effect on the novel stacked source trench gate TFET device. The results show that with the increase of drain voltage, incident width of heavy ions (less than 0.04µm), and linear energy transfer, the drain transient current and collected charge also increase. The prediction results of deep learning algorithm show that the relative error percentage of drain current pulse peak (IDMAX) and collected charge (Qc) is less than 10%, and the relative error percentage of most predicted values is less than 1%. Comparison experiments with five traditional machine learning methods (support vector machine, decision tree, K-nearest algorithm, ridge regression, linear regression) show that the deep learning algorithm has the best performance and has the smallest average error percentage. This data-driven deep learning algorithm model not only enables researchers who are not familiar with semiconductor devices to quickly obtain the transient data of a single particle under any conditions; at the same time, it can be applied to digital circuit design as a data-driven device model reflecting the reliability of single particle transient. The application of deep learning in the field of device irradiation prediction has a highly promising prospect in the future.

4.
Chem Commun (Camb) ; 60(64): 8350-8359, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39028126

RESUMO

Metal-organic frameworks (MOFs) have become a hot spot in the area of functional materials and have undergone rapid development in a wide range of fields in the 21st century. However, the scalable application of MOFs is still constrained by high production cost at the front end. Additionally, systematic discussion of the reuse of spent MOFs is lacking. Encouragingly, an increasing number of studies have been focusing on the low-cost production and recycling of MOF-based materials, providing feasible solutions for resource recovery and reduction. To stimulate future enthusiasm and interest in realizing the blue economy of MOFs, ranging from front-end production to terminal disposal, we have presented and summarized the state-of-the-art progress in the sustainable synthesis, separation, and reuse of MOFs. Based on the existing challenges, we also propose fit-for-purpose future directions in the MOF field to move toward blue economy.

5.
J Hazard Mater ; 472: 134420, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691997

RESUMO

In this work, MIL-88A(Fe) was immobilized onto the expanded perlites to fabricate the floating MIL-88A(Fe)@expanded perlites (M@EP) catalyst via high throughput batch synthesis method under room temperature. The as-prepared M@EP could efficiently activate H2O2 to achieve 100% tetracycline antibiotics (TCs) removal under both artificial low power UV light (UVL) and real sunlight (SL) irradiation. The toxicological evaluation, growth experiment of mung beans and antimicrobial estimation revealed the decreasing aquatic toxicity of the TCs intermediates compared to those of the pristine TCs. A self-designed continuous bed reactor was employed to investigate the long-term operation of the M@EP. The findings demonstrated that the antibiotics mixture can be continuously degraded up to 7 days under UVL and 5 daytimes under SL irradiation, respectively. More importantly, ca. 76.9% and 81.6% of total organic carbon (TOC) removal efficiencies were accomplished in continuous bed reactor under UVL and SL irradiation, respectively. This work advances the immobilized MOFs on floating supports for their practical application in large-scale wastewater purification through advanced oxidation processes. ENVIRONMENTAL IMPLICATION: This work presented the high throughput production and photo-Fenton degradation application of floating MIL-88A(Fe)@expanded perlites (M@EP). Three tetracycline antibiotics (TCs) were selected as model pollutants to test the degradation ability of M@EP in batch experiment and continuous operation under artificial light and solar light. The complete TCs degradation could be accomplished in self-designed device up to 7 d under UV light and 5 d under real solar light. This work tapped a new door to push MOFs-based functional materials in the real water purification.

6.
Chem Commun (Camb) ; 60(27): 3713-3716, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38477555

RESUMO

Co2P/tetrasodium diphosphate (TD) derived from ZIF-67/sodium phytate was newly developed and synthesized, and exhibited excellent degradation ability toward various refractory organics via peroxymonosulfate activation. A corresponding reaction mechanism was proposed. In addition, a continuous-flow operation of phenol degradation was realized.

7.
Dalton Trans ; 53(11): 5266-5273, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38407245

RESUMO

In this work, a three-dimensional bimetallic metal-organic framework (BMOF), BUC-101 (Co/Mn-H6chhc, H6chhc = cis-1,2,3,4,5,6-cyclohexane-hexacarboxylic acid, BUC = Beijing University of Civil Engineering and Architecture) was synthesized by a one-pot solvothermal method and characterized in detail by single crystal X-ray diffraction (SCXRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) element mapping analysis. BUC-101 showed excellent catalytic peroxymonosulfate (PMS) activation performance to degrade rhodamine B (RhB) without energy input. In addition, BUC-101 can maintain good stability and recyclability during the PMS activation processes, in which 99.9% RhB degradation efficiencies could be accomplished in 5 operational runs. The possible PMS activation and RhB degradation mechanisms of the BUC-101/PMS system were proposed and affirmed.

8.
J Hum Genet ; 69(5): 197-203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374166

RESUMO

CAPZA2 encodes the α2 subunit of CAPZA, which is vital for actin polymerization and depolymerization in humans. However, understanding of diseases associated with CAPZA2 remains limited. To date, only three cases have been documented with neurodevelopmental abnormalities such as delayed motor development, speech delay, intellectual disability, hypotonia, and a history of seizures. In this study, we document a patient who exhibited seizures, mild intellectual disability, and impaired motor development yet did not demonstrate speech delay or hypotonia. The patient also suffered from recurrent instances of respiratory infections, gastrointestinal and allergic diseases. A novel de novo splicing variant c.219+1 G > A was detected in the CAPZA2 gene through whole-exome sequencing. This variant led to exon 4 skipping in mRNA splicing, confirmed by RT-PCR and Sanger sequencing. To our knowledge, this is the third study on human CAPZA2 defects, documenting the fourth unambiguously diagnosed case. Furthermore, this splicing mutation type is reported here for the first time. Our research offers additional support for the existence of a CAPZA2-related non-syndromic neurodevelopmental disorder. Our findings augment our understanding of the phenotypic range associated with CAPZA2 deficiency and enrich the knowledge of the mutational spectrum of the CAPZA2 gene.


Assuntos
Proteína de Capeamento de Actina CapZ , Deficiências do Desenvolvimento , Epilepsia , Heterozigoto , Hipotonia Muscular , Mutação , Pré-Escolar , Feminino , Humanos , Masculino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Epilepsia/genética , Sequenciamento do Exoma , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Fenótipo , Splicing de RNA/genética , Proteína de Capeamento de Actina CapZ/genética
9.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-1042530

RESUMO

Background/Aims@#Metabolic dysfunction-associated steatotic liver disease (MASLD) has become an increasingly important health challenge, with a substantial rise linked to changing lifestyles and global obesity. Ursolic acid, a natural pentacyclic triterpenoid, has been explored for its potential therapeutic effects. Given its multifunctional bioactive properties, this research further revealed the pharmacological mechanisms of ursolic acid on MASLD. @*Methods@#Drug target chips and bioinformatics analysis were combined in this study to explore the potential therapeutic effects of ursolic acid on MASLD. Molecular docking simulations, surface plasmon resonance analyses, pull-down experiments, and co-immunoprecipitation assays were used to verify the direct interactions. Gene knockdown mice were generated, and high-fat diets were used to validate drug efficacy. Furthermore, initial CD4+ T cells were isolated and stimulated to demonstrate our findings. @*Results@#In this study, the multifunctional extracellular matrix phosphorylated glycoprotein secreted phosphoprotein 1 (SPP1) was investigated, highlighting its capability to induce Th17 cell differentiation, amplifying inflammatory cascades, and subsequently promoting the evolution of MASLD. In addition, this study revealed that in addition to the canonical TGF-β/IL-6 cytokine pathway, SPP1 can directly interact with ITGB1 and CD44, orchestrating Th17 cell differentiation via their joint downstream ERK signaling pathway. Remarkably, ursolic acid intervention notably suppressed the protein activity of SPP1, suggesting a promising avenue for ameliorating the immunoinflammatory trajectory in MASLD progression. @*Conclusions@#Ursolic acid could improve immune inflammation in MASLD by modulating SPP1-mediated Th17 cell differentiation via the ERK signaling pathway, which is orchestrated jointly by ITGB1 and CD44, emerging as a linchpin in this molecular cascade.

10.
Langmuir ; 39(47): 16863-16872, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37963178

RESUMO

A suitable adsorbent is essential in the process of removing hazardous vanadium(V) from actual groundwater. In this work, MIL-88A(Fe)/cotton (MC) was employed to eliminate V(V) from simulated vanadium-contaminated groundwater. The findings demonstrated that MC exhibited an exceptional performance in removing V(V), displaying a maximum adsorption capacity of 218.71 mg g-1. MC exhibits great promise as an adsorbent for V(V) elimination in an extensive pH range spanning 3 to 11. Even in the presence of high levels of competing ions such as Cl-, NO3-, and SO42-, MC demonstrated remarkable specificity in adsorbing V(V). The results of column experiments and co-occurring ions influence tests indicate that MC is a potential candidate for effectively treating actual vanadium-contaminated groundwater. The effluent could meet the vanadium content restriction of 50 µg L-1 required in China's drinking water sources. Regeneration of MC can be performed easily without experiencing significant capacity loss. The results obtained from this research indicate the promising potential of MC in mitigating vanadium pollution.

11.
Chemosphere ; 338: 139495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451638

RESUMO

Cobalt 2-methylimidazole (ZIF-67) have abundant nitrogen and cobalt elements, which can be used as an excellent precursor for catalyst synthesis. In this study, a new Co, N co-doped carbon-based catalyst (Co-N-BC) was synthesized from ZIF-67 and biochar, which can significantly improve the degradation of 4-nitrophenol (4-NP) in catalytic ozonation. The mineralization rate of 4-NP achieves 65.8% within 60 min. The catalyst showed high recycling stability in the four cycles of reuse experiment. Different operating parameters, such as solution pH, the concentration of O3 and 4-NP, have been studied in the Co-N-BC catalytic ozonation. O3, O2-· and ·OH are determined as the main reactive species for 4-NP degradation, and ·OH is especially responsibly for 4-NP mineralization. The existence of inorganic ions, such as Cl-, NO2-, CO32- and PO43-, all significantly inhibited the degradation of 4-NP to different extend, respectively. The effect of substituent on a series of organics with similar structure of 4-NP was also investigated in Co-N-BC catalytic ozonation. This study provides a new composite material for heterogeneous catalytic ozonation, which is very promising in 4-NP contained complex wastewater treatment.


Assuntos
Ozônio , Poluentes Químicos da Água , Ozônio/química , Poluentes Químicos da Água/análise , Catálise , Cobalto/química
12.
Antioxidants (Basel) ; 12(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37507885

RESUMO

Zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) are typical metal-organic framework (MOF) materials and have been intensively studied for their potential application in drug delivery and environmental remediation. However, knowledge of their potential risks to health and the environment is still limited. Therefore, this study exposed female and male zebrafish to ZIF-8 NPs (0, 9.0, and 90 mg L-1) for four days. Subsequently, variations in their behavioral traits and brain oxidative stress levels were investigated. The behavioral assay showed that ZIF-8 NPs at 90 mg/L could significantly decrease the locomotor activity (i.e., hypoactivity) of both genders. After a ball falling stimulation, zebrafish exposed to ZIF-8 NPs (9.0 and 90 mg L-1) exhibited more freezing states (i.e., temporary cessations of movement), and males were more sensitive than females. Regardless of gender, ZIF-8 NPs exposure significantly reduced the SOD, CAT, and GST activities in the brain of zebrafish. Correlation analysis revealed that the brain oxidative stress induced by ZIF-8 NPs exposure might play an important role in their behavioral toxicity to zebrafish. These findings highlight the necessity for further assessment of the potential risks of MOF nanoparticles to aquatic species and the environment.

13.
J Colloid Interface Sci ; 649: 384-393, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37354795

RESUMO

Constructing Fe-Cu bimetal catalysts is an efficient strategy to promote Fe(III)/Fe(II) cycle, whereas there is still a long way to go before fully understanding the role of the Cu in the catalysts. Herein, a new Fe-MOF namely BUC-96(Fe) was fabricated from FeSO4·7H2O, 4,4'-bipyridine (bpy) and 2,5-dihydroxyterephthalic acid (H4dhtp) by both hydrothermal reaction and microwave-assisted method. Also, bimetal BUC-96(FeCu-x) were obtained when the CuSO4 was added into the system identical to the synthesis process of BUC-96(Fe). Series BUC-96 MOFs showed good organics elimination performance via Fenton-like process, where 88.1% (k = 0.0672 min-1) of chloroquine phosphate (CQ, 20 mg/L) was decomposed over pristine BUC-96(Fe) within 30 min. Interestingly, nearly 100% CQ was degraded over BUC-96(FeCu-5) as catalyst under the identical conditions within 5 min, whose reaction rate (1.3527 min-1) was 20.1-fold higher than that of BUC-96. Additionally, BUC-96(FeCu-5) exhibited excellent Fenton-like oxidation degradation performance for 10 selected emerging organic pollutants. The reaction mechanism was studied in detail by experiments, and density functional theory (DFT) calculation. The results revealed that the introduced Cu not only accelerated Fe(III)/Fe(II) cycles, hydroxyl radical (·OH) generation, electron transfer, but also lowered H2O2 dissociated energy barrier. This work advanced the bimetal MOFs construction and application in wastewater treatment via Fenton-like process.

14.
Chemosphere ; 322: 138221, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36828116

RESUMO

FT-x composites with core-shell structure (FT = FeS2@TiO2, x represents the mass ratio of the used FeCl3·6H2O to MIL-125) were fabricated by a hydrothermal method using MIL-125(Ti) as a self-sacrificing template. Both the photo-Fenton activity and stability of the FT-1 were improved greatly in comparison with its counterparts due to the unique core-shell structure and synergistic effect between FeS2 and TiO2. Especially, the Fe leaching concentration of FT-1 was approximately 1/10 of the individual FeS2, benefiting from the protection effect of TiO2 shell. Under dark condition, the formed FeOOH occupied active sites and inhibited iron cycle as well as H2O2 decomposition, leading to the inactivation of FT-1. UV light irradiation not only boosted the catalytic activity but also prevented the FT-1 from reactivity decline owning to the regeneration of Fe2+ by photogenerated electrons and continuous generation of ·OH. Experimental and DFT calculation results indicated that a type-II heterojunction was formed, in which photogenerated electrons were transferred from FeS2 core to TiO2 shell, accelerating charge separation and further boosting sulfamethoxazole (SMX) degradation. FT-1 displayed outstanding photo-Fenton activity in wide pH ranged from 2 to 6 and good anti-interfering ability toward impurities in water matrix. Besides, the reusability of FT-1 was good, in which 90% SMX degradation was maintained even after 5 runs. Noteworthy, the photo-Fenton activity was recovered via a revulcanization process, in which FeOOH was completely transformed into FeS2. This founding provided insights for the design and construction of heterojunction with both excellent photo-Fenton activity and stability.


Assuntos
Peróxido de Hidrogênio , Sulfametoxazol , Peróxido de Hidrogênio/química , Ferro/química , Titânio/química
15.
Nanomaterials (Basel) ; 13(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770492

RESUMO

In order to detect biomolecules, a biosensor based on a dielectric-modulated stacked source trench gate tunnel field effect transistor (DM-SSTGTFET) is proposed. The stacked source structure can simultaneously make the on-state current higher and the off-state current lower. The trench gate structure will increase the tunneling area and tunneling probability. Technology computer-aided design (TCAD) is used for the sensitivity study of the proposed structured biosensor. The results show that the current sensitivity of the DM-SSTGTFET biosensor can be as high as 108, the threshold voltage sensitivity can reach 0.46 V and the subthreshold swing sensitivity can reach 0.8. As a result of its high sensitivity and low power consumption, the proposed biosensor has highly promising prospects.

16.
J Microbiol Immunol Infect ; 56(2): 274-281, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36243667

RESUMO

BACKGROUND: Healthcare workers (HCWs) without evidence of immunity to varicella-zoster virus (VZV) are recommended to undergo varicella vaccination. Immunogenicity of live attenuated varicella vaccine has rarely been investigated among HCWs in Taiwan. METHODS: Anti-VZV immunoglobulin G (IgG) titer was checked for all HCWs at Changhua Christian Hospital from 2011 to 2017. One-dose and two-dose (separated by 4-8 weeks) vaccines were administered to HCWs with equivocal and negative anti-varicella IgG results, respectively. Follow-up anti-VZV IgG was determined at least 4 weeks after completion of vaccination. Factors associated with seroconversion to varicella vaccination were analyzed. RESULTS: Among 2406 included HCWs, the anti-VZV IgG serostatus was tested positive, equivocal and negative in 1924 (79.9%), 117 (4.9%) and 365 (15.2%), respectively. The seroprevalence had decreased from 88.0% (235/267) in 2011 to 72.2% (270/374) in 2017 (p for trend <0.05). A total of 67.8% (327/482) HCWs completed scheduled vaccination and serological follow-up. The seroconversion rates for HCWs with baseline equivocal and negative anti-VZV IgG results were 100% (80/80) and 79.4% (196/247) after one- and two-dose vaccination, respectively. In multivariate analysis, obesity (adjusted odds ratio, 0.308; 95% confidence interval [CI], 0.11-0.94, p = 0.039) was the only factor statistically significantly associated with seroconversion to vaccination. CONCLUSION: Decreasing trends of seroprevalence of VZV were observed among HCWs from 2011 to 2017. HCWs who were obese were less likely to respond to varicella vaccination.


Assuntos
Pessoal de Saúde , Herpesvirus Humano 3 , Humanos , Estudos Soroepidemiológicos , Taiwan/epidemiologia , Vacina contra Varicela , Anticorpos Antivirais , Imunoglobulina G
17.
J Hazard Mater ; 445: 130552, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36502718

RESUMO

For broad-spectrum adsorption and capture toward cationic metal ions, a facile strategy was adopted to fabricate defective SO3H-MIL-101(Cr) (SS-SO3H-MIL-101(Cr)-X, X = 2, 3, 4) with enhanced vacancies using seignette salt (SS) as the modulating agent. The boosted adsorption performances of SS-SO3H-MIL-101(Cr)-X toward eight different ions, including Ag+, Cs+, Pb2+, Cd2+, Ba2+, Sr2+, Eu3+ and La3+ in both individual component and mixed component systems, could be ascribed to the effective mass transfer resulting from the exposure of defective sites. Especially, the optimal SS-SO3H-MIL-101(Cr)-3 could remove all the selected metal cations to below the permissible limits required by the World Health Organization (WHO) in the continuous-flow water treatment system. Furthermore, SS-SO3H-MIL-101(Cr)-3 exhibited good adsorption capacity (189.6 mg·g-1) toward Pb2+ under neutral condition and excellent desorption recirculation performance (removal efficiency > 95% after 5 cycles). Moreover, the adsorption mechanism involved the electrostatic adsorption and coordinative interactions resulting from complexation between the adsorption active sites and targeted cations (like Cr-O-M and S-O-M), which were explored systematically via both X-ray photoelectron spectroscopy (XPS) determination and density functional theory (DFT) calculations. Overall, this work provided guidance for modulating SS-SO3H-MIL-101(Cr)-X to promote its potential application in widespread metal cations removal from wastewater.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Chumbo , Poluentes Químicos da Água/química , Estruturas Metalorgânicas/química , Íons , Cátions , Adsorção
18.
Work ; 74(2): 469-476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36278379

RESUMO

BACKGROUND: There is an increasing concern about musculoskeletal disorders (MSD), resulting from occupational health hazards among dentists. Dentists who are susceptible to occupational health hazards could develop cumulative trauma disorders, lead to absenteeism from work, loss of productivity and performance or even long-term disability. OBJECTIVE: This study aims to determine the prevalence of musculoskeletal disorders among dentists, explore the risk factors and identify the ergonomic preventive measures for dental professionals. METHODS: Articles published between 2008-2020 were searched in scientific databases (MEDLINE, PubMed, Scopus and Cochrane Library). The Critical Appraisal Skills Programme Systematic Review Checklist was used to assess the quality of the studies. RESULTS: Eighteen studies were found to be suitable in the final review. Relevant data was extracted and summarized from the included studies. The annual prevalence of musculoskeletal disorders in any body site ranged between 68% and 100%. The most predominant regions for musculoskeletal disorders among dental professionals were identified to be the lower back (29% to 94.6%), shoulder (25% to 92.7%), and neck (26% to 92%). The most frequently reported risk factors of MSDs were the individual characteristic female gender (57.1%), followed by awkward working postures (50%), long working experience (50%) and being dental specialists (42.9%). Several preventive measures were identified as the most effective ways in preventing MSDs, the use of magnification (40%) and regular physical activity (40%). CONCLUSIONS: This review reported a high prevalence of musculoskeletal disorders (MSD) among dentists. It critically updates and adds the latest evidence on occupational ergonomics among dentists.


Assuntos
Doenças Musculoesqueléticas , Doenças Profissionais , Humanos , Feminino , Odontólogos , Doenças Musculoesqueléticas/epidemiologia , Ergonomia/métodos , Postura , Fatores de Risco , Doenças Profissionais/epidemiologia , Prevalência
19.
Acta Pharmaceutica Sinica ; (12): 494-505, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-965612

RESUMO

Malignant tumors are major diseases that endanger human health. Due to their complex and variable microenvironment, most anti-tumor drugs cannot precisely reach the focal tissue and be released in a controlled manner. Intelligent responsive nano carriers have become a hot spot in the field of anti-tumor drug delivery systems. As an excellent nano material, mesoporous silica has the advantages of non-toxic, stable, adjustable pore volume and pore diameter, and easy functional modification on the surface. By virtue of its perceptive response to the tumor microenvironment or physiological changes, it can achieve the targeted drug release or controlled drug release of the drug delivery system in the tissue, making it an ideal carrier for intelligent response drug delivery system. In this paper, we review the design strategies and current research status of smart responsive anti-tumor drug delivery systems based on mesoporous silica, in order to provide a reference for the development of anti-tumor drug nanoformulations.

20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-971104

RESUMO

OBJECTIVE@#To explore the regulatory effect of chidamide on CD8+ T cells in T-cell acute lymphoblastic leukemia.@*METHODS@#The expression levels of CXCL9 and CXCL3 mRNA in Jurkat cells, lymphocytes treated with chidamide and lymphocytes co-cultured with chidamide-treated Jurkat cells were detected by fluorescence quantitative PCR. The proportion of CD8+ T cells in lymphocytes treated with chidamide and lymphocytes co-cultured with chidamide-treated Jurkat cells was determined by flow cytometry.@*RESULTS@#Chidamide upregulated CXCL9 mRNA expression in Jurkat cell line in a dose-dependent manner (r=0.950). The mRNA expression of CXCL9 in chidamide 5 μmol/L group was 164 times higher than that in control group. Chidamide upregulated CXCL9 mRNA expression in lymphocytes, but the up-regulated level was significantly lower than that in Jurkat cell line treated with the same concentration of chidamide. Co-culture with chidamide treated Jurkat cells upregulated the proportion of CD8+ T cells in lymphocytes.@*CONCLUSION@#In T-cell acute lymphoblastic leukemia, chidamide may increase the concentration of CXCL9 in the tumor microenvironment by up-regulating the expression of CXCL9 in tumor cells, leading to an increase in the number of CD8+ T cells.


Assuntos
Humanos , Linfócitos T CD8-Positivos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Aminopiridinas/farmacologia , Células Jurkat , RNA Mensageiro , Linhagem Celular Tumoral , Apoptose , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA