Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 70(6): 1719-1736, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30753578

RESUMO

Grasses have evolved complex inflorescences, where the primary unit is the specialized short branch called a spikelet. Detailed studies of the cumulative action of the genetic regulators that direct the progressive change in axillary meristem identity and their terminal differentiation are crucial to understanding the complexities of the inflorescence and the development of a determinate floret. Grass florets also pose interesting questions concerning the morphologies and functions of organs as compared to other monocots and eudicots. In this review, we summarize our current knowledge of the regulation of the transitions that occur in grass inflorescence meristems, and of the specification of floret meristems and their determinate development. We primarily use rice as a model, with appropriate comparisons to other crop models and to the extensively studied eudicot Arabidopsis. The role of MADS-domain transcription factors in floral organ patterning is well documented in many eudicots and in grasses. However, there is evidence to suggest that some of these rice floral regulators have evolved distinctive functions and that other grass species-specific factors and regulatory pathways occur - for example the LOFSEP 'E' class genes OsMADS1 and OsMAD34, and ramosa genes. A better understanding of these systems and the epigenetic regulators and hormone signaling pathways that interact with them will provide new insights into the rice inflorescence meristem and the differentiation of its floret organs, and should indicate genetic tools that can be used to control yield-related traits in both rice and other cereal crops.


Assuntos
Meristema/crescimento & desenvolvimento , Organogênese Vegetal/genética , Oryza/crescimento & desenvolvimento , Meristema/genética , Meristema/metabolismo , Oryza/genética , Oryza/metabolismo , Reprodução
2.
Plant Physiol ; 172(1): 372-88, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457124

RESUMO

OsMADS1 controls rice (Oryza sativa) floral fate and organ development. Yet, its genome-wide targets and the mechanisms underlying its role as a transcription regulator controlling developmental gene expression are unknown. We identify 3112 gene-associated OsMADS1-bound sites in the floret genome. These occur in the vicinity of transcription start sites, within gene bodies, and in intergenic regions. Majority of the bound DNA contained CArG motif variants or, in several cases, only A-tracts. Sequences flanking the binding peak had a higher AT nucleotide content, implying that broader DNA structural features may define in planta binding. Sequences for binding by other transcription factor families like MYC, AP2/ERF, bZIP, etc. are enriched in OsMADS1-bound DNAs. Target genes implicated in transcription, chromatin remodeling, cellular processes, and hormone metabolism were enriched. Combining expression data from OsMADS1 knockdown florets with these DNA binding data, a snapshot of a gene regulatory network was deduced where targets, such as AP2/ERF and bHLH transcription factors and chromatin remodelers form nodes. We show that the expression status of these nodal factors can be altered by inducing the OsMADS1-GR fusion protein and present a model for a regulatory cascade where the direct targets of OsMADS1, OsbHLH108/SPT, OsERF034, and OsHSF24, in turn control genes such as OsMADS32 and OsYABBY5 This cascade, with other similar relationships, cumulatively contributes to floral organ development. Overall, OsMADS1 binds to several regulatory genes and, probably in combination with other factors, controls a gene regulatory network that ensures rice floret development.


Assuntos
DNA de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Sequência de Bases , Sítios de Ligação/genética , DNA de Plantas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Redes Reguladoras de Genes , Proteínas de Domínio MADS/metabolismo , Motivos de Nucleotídeos/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
J Exp Bot ; 66(9): 2773-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25788736

RESUMO

Axillary meristems (AMs) are secondary shoot meristems whose outgrowth determines plant architecture. In rice, AMs form tillers, and tillering mutants reveal an interplay between transcription factors and the phytohormones auxin and strigolactone as some factors that underpin this developmental process. Previous studies showed that knockdown of the transcription factor gene RFL reduced tillering and caused a very large decrease in panicle branching. Here, the relationship between RFL, AM initiation, and outgrowth was examined. We show that RFL promotes AM specification through its effects on LAX1 and CUC genes, as their expression was modulated on RFL knockdown, on induction of RFL:GR fusion protein, and by a repressive RFL-EAR fusion protein. Further, we report reduced expression of auxin transporter genes OsPIN1 and OsPIN3 in the culm of RFL knockdown transgenic plants. Additionally, subtle change in the spatial pattern of IR4 DR5:GFP auxin reporter was observed, which hints at compromised auxin transport on RFL knockdown. The relationship between RFL, strigolactone signalling, and bud outgrowth was studied by transcript analyses and by the tillering phenotype of transgenic plants knocked down for both RFL and D3. These data suggest indirect RFL-strigolactone links that may affect tillering. Further, we show expression modulation of the auxin transporter gene OsPIN3 upon RFL:GR protein induction and by the repressive RFL-EAR protein. These modified forms of RFL had only indirect effects on OsPIN1. Together, we have found that RFL regulates the LAX1 and CUC genes during AM specification, and positively influences the outgrowth of AMs though its effects on auxin transport.


Assuntos
Meristema/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Transporte Biológico/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Ácidos Indolacéticos/metabolismo , Meristema/citologia , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...