Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(17): 17332-17341, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37611149

RESUMO

Sensory neuromorphic systems are a promising technology, because they can replicate the way the human peripheral nervous system processes signals from the five sensory organs. Despite this potential, there are limited studies on how to implement these systems on a hardware neural network platform. In our research, we propose a tactile neuromorphic system that uses a poly(dimethylsiloxane) (PDMS)-based triboelectric sensor and a molybdenum disulfide (MoS2)/poly(vinylidene fluoride-trifluoro ethylene) (P(VDF-TrFE)) heterostructure-based ferroelectric synapse. The triboelectric sensor mimics a human tactile organ by converting tactile stimuli into electrical signals in real time. The ferroelectric synapse we developed demonstrates exceptional long-term potentiation/depression characteristics with a maximum dynamic range of 78 and a symmetrical value of 4.7. To assess the practicality of our proposed system, we conducted training and recognition simulations using Morse code alphabets and MNIST handwritten digits. The maximum recognition rate that we achieved was 96.17%.

2.
ACS Nano ; 16(6): 8827-8836, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35435652

RESUMO

A rapid surge in global energy consumption has led to a greater demand for renewable energy to overcome energy resource limitations and environmental problems. Recently, a number of van der Waals materials have been highlighted as efficient absorbers for very thin and highly efficient photovoltaic (PV) devices. Despite the predicted potential, achieving power conversion efficiencies (PCEs) above 5% in PV devices based on van der Waals materials has been challenging. Here, we demonstrate a vertical WSe2 PV device with a high PCE of 5.44% under one-sun AM1.5G illumination. We reveal the multifunctional nature of a tungsten oxide layer, which promotes a stronger internal electric field by overcoming limitations imposed by the Fermi-level pinning at WSe2 interfaces and acts as an electron-selective contact in combination with monolayer graphene. Together with the developed bottom contact scheme, this simple yet effective contact engineering method improves the PCE by more than five times.

3.
Adv Sci (Weinh) ; 9(6): e2103808, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34957687

RESUMO

Recently, three-terminal synaptic devices, which separate read and write terminals, have attracted significant attention because they enable nondestructive read-out and parallel-access for updating synaptic weights. However, owing to their structural features, it is difficult to address the relatively high device density compared with two-terminal synaptic devices. In this study, a vertical synaptic device featuring remotely controllable weight updates via e-field-dependent movement of mobile ions in the ion-gel layer is developed. This synaptic device successfully demonstrates all essential synaptic characteristics, such as excitatory/inhibitory postsynaptic current (E/IPSC), paired-pulse facilitation (PPF), and long-term potentiation/depression (LTP/D) by electrical measurements, and exhibits competitive LTP/D characteristics with a dynamic range (Gmax /Gmin ) of 31.3, and asymmetry (AS) of 8.56. The stability of the LTP/D characteristics is also verified through repeated measurements over 50 cycles; the relative standard deviations (RSDs) of Gmax /Gmin and AS are calculated as 1.65% and 0.25%, respectively. These excellent synaptic properties enable a recognition rate of ≈99% in the training and inference tasks for acoustic and emotional information patterns. This study is expected to be an important foundation for the realization of future parallel computing networks for energy-efficient and high-speed data processing.

4.
Sci Adv ; 7(44): eabg9450, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714683

RESUMO

We propose a flexible artificial synapse based on a silicon-indium-zinc-oxide (SIZO)/ion gel hybrid structure directly fabricated on a polyimide substrate, where the channel conductance is effectively modulated via ion movement in the ion gel. This synaptic operation is possible because of the low-temperature deposition process of the SIZO layer (<150°C) and the surface roughness improvement of the poly(4-vinylphenol) buffer layer (12.29→1.81 nm). The flexible synaptic device exhibits extremely stable synaptic performance under high mechanical (bending 1500 times with a radius of 5 mm) and electrical stress (application of voltage pulses 104 times) without any degradation. Last, a sensory-neuromorphic system for sign language translation, which consists of stretchable resistive sensors and flexible artificial synapses, is designed and successfully evaluated via training and recognition simulation using hand sign patterns obtained by stretchable sensors (maximum recognition rate, 99.4%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...