Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433052

RESUMO

This work provides a structural analysis of small-scale 3D-printed wind turbine ribs subjected to compression. The ribs were manufactured according to NACA 23015 and NACA 633618 geometries, with polylactic acid (PLA) and polylactic acid with carbon fiber additives (CF-PLA). In addition, holes were manufactured into the sample bodies by either 3D printing or drilling for being compared with solid samples. The compression testing was performed by following the ASTM 695D standard, whereas the beginning and propagation of delamination were assessed with the ASTM 5528 standard. Experimental results revealed that 3D-printed built-in holes provided higher compression strength, hence higher structural efficiency, than the drilled samples. Significant improvement by adding carbon fiber additives into the PLA resin system in comparison to raw PLA was detected for at least one of the studied airfoil profiles. NACA geometries also represented a key parameter for avoiding stress concentration areas, as the FEM modeling supported. However, in damaged areas, fracture mechanisms were observed such as bead-bridging, which is a key parameter in reinforcing and consolidating the specimen bodies. Working in better interphase bonding and different additives between beads and layers is highly suggested for future studies.

2.
Polymers (Basel) ; 14(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36365770

RESUMO

Additive manufacturing technologies have facilitated the construction of intricate geometries, which otherwise would be an extenuating task to accomplish by using traditional processes. Particularly, this work addresses the manufacturing, testing, and modeling of thermoplastic polyurethane (TPU) lattices. Here, a discussion of different unit cells found in the literature is presented, along with the based materials used by other authors and the tests performed in diverse studies, from which a necessity to improve the dynamic modeling of polymeric lattices was identified. This research focused on the experimental and numerical analysis of elastomeric lattices under quasi-static and dynamic compressive loads, using a Kelvin unit cell to design and build non-graded and spatially side-graded lattices. The base material behavior was fitted to an Ogden 3rd-order hyperelastic material model and used as input for the numerical work through finite element analysis (FEA). The quasi-static and impact loading FEA results from the lattices showed a good agreement with the experimental data, and by using the validated simulation methodology, additional special cases were simulated and compared. Finally, the information extracted from FEA allowed for a comparison of the performance of the lattice configurations considered herein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...