Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 37(11): e23477, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37477207

RESUMO

Malignant glioma is the deadliest form of brain cancer. Zingerone (ZO), a polyphenolic compound found in ginger, offers pharmacological properties that make it a promising agent for containing the growth of glioma cells. The present study was conducted to understand the efficacy of ZO in containing the growth of C6 glioma cells. The study also assessed the prophylactic role of ZO on rat brain glioma induced by C6 cell lines by addressing its antioxidative action on biochemical, behavioral, and histoarchitectural indices. For dose optimization, the animals were pretreated with different doses of ZO for a period of 2 weeks before the inoculation of glioma cells (1 × 105 /10 µL phosphate-buffered saline) in the caudate region of rat brain and the treatment with ZO continued for 4 more weeks post implantation. In vitro studies were done to assess the radical scavenging activity of ZO and also to determine its effects on viability of C6 glioma cells at different concentrations. Glioma-bearing rats showed significant alterations in memory; exploratory and muscular activities which were appreciably improved upon simultaneous supplementation of ZO administered at a dose of 50 mg/kg body weight and were also visible even at a higher dose. Glioma-bearing rats revealed a significant increase in reactive oxygen species, protein carbonyl contents, and lipid peroxidation, but showed a significant decrease in reduced glutathione and antioxidative enzymes in the brain tissue. Interestingly, all the biochemical indices and altered brain histoarchitecture displaying cellular atypia and hyperplasia showed appreciable improvement when supplemented with ZO at a dose of 50 mg/kg body weight.


Assuntos
Glioma , Estresse Oxidativo , Ratos , Animais , Apoptose , Antioxidantes/metabolismo , Glioma/tratamento farmacológico , Glioma/patologia , Encéfalo/metabolismo , Peso Corporal
2.
Neurochem Res ; 46(8): 1953-1969, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33950473

RESUMO

Clinical and experimental evidences reveal that excess exposure to manganese is neurotoxic and leads to cellular damage. However, the mechanism underlying manganese neurotoxicity remains poorly understood but oxidative stress has been implicated to be one of the key pathophysiological features related to it. The present study investigates the effects associated with manganese induced toxicity in rats and further to combat these alterations with a well-known antioxidant N-acetylcysteine which is being used in mitigating the damage by its radical scavenging activity. The study was designed to note the sequential changes along with the motor and memory dysfunction associated with biochemical and histo-pathological alterations following exposure and treatment for 2 weeks. The results so obtained showed decrease in the body weights, behavioral deficits with increased stress markers and also neuronal degeneration in histo-pathological examination after manganese intoxication in rats. To overcome the neurotoxic effects of manganese, N-acetylcysteine was used in the current study due to its pleiotropic potential in several pathological ailments. Taken together, N-acetylcysteine helped in ameliorating manganese induced neurotoxic effects by diminishing the behavioral deficits, normalizing acetylcholinesterase activity, and augmentation of redox status.


Assuntos
Acetilcisteína/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Intoxicação por Manganês/tratamento farmacológico , Manganês/toxicidade , Acetilcolinesterase/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Catalase/metabolismo , Glutationa/metabolismo , Masculino , Intoxicação por Manganês/metabolismo , Intoxicação por Manganês/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotransmissores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...