Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(10): 6926-6935, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38430200

RESUMO

G-quadruplex (G4) DNA structures are prevalent secondary DNA structures implicated in fundamental cellular functions, such as replication and transcription. Furthermore, G4 structures are directly correlated to human diseases such as cancer and have been highlighted as promising therapeutic targets for their ability to regulate disease-causing genes, e.g., oncogenes. Small molecules that bind and stabilize these structures are thus valuable from a therapeutic perspective and helpful in studying the biological functions of the G4 structures. However, there are hundreds of thousands of G4 DNA motifs in the human genome, and a long-standing problem in the field is how to achieve specificity among these different G4 structures. Here, we developed a strategy to selectively target an individual G4 DNA structure. The strategy is based on a ligand that binds and stabilizes G4s without selectivity, conjugated to a guide oligonucleotide, that specifically directs the G4-Ligand-conjugated oligo (GL-O) to the single target G4 structure. By employing various biophysical and biochemical techniques, we show that the developed method enables the targeting of a unique, specific G4 structure without impacting other off-target G4 formations. Considering the vast amount of G4s in the human genome, this represents a promising strategy to study the presence and functions of individual G4s but may also hold potential as a future therapeutic modality.


Assuntos
DNA , Quadruplex G , Humanos , Ligantes , DNA/química , Oligonucleotídeos
2.
J Med Chem ; 67(3): 2202-2219, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38241609

RESUMO

G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene-arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets.


Assuntos
DNA , Quadruplex G , Ligantes , Eletricidade Estática , DNA/metabolismo , Regiões Promotoras Genéticas
3.
Nucleic Acids Res ; 51(14): 7392-7408, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37351621

RESUMO

Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.


Assuntos
DNA Mitocondrial , Quadruplex G , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Replicação do DNA/genética
4.
J Phys Chem Lett ; 14(7): 1862-1869, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36779779

RESUMO

Molecular self-assembly is a powerful tool for the development of functional nanostructures with adaptive optical properties. However, in aqueous solution, the hydrophobic effects in the monomeric units often afford supramolecular architectures with typical side-by-side π-stacking arrangement with compromised emissive properties. Here, we report on the role of parallel DNA guanine quadruplexes (G4s) as supramolecular disaggregating-capture systems capable of coordinating a zwitterionic fluorine-boron-based dye and promoting activation of its fluorescence signal. The dye's high binding affinity for parallel G4s compared to nonparallel topologies leads to a selective disassembly of the dye's supramolecular state upon contact with parallel G4s. This results in a strong and selective disaggregation-induced emission that signals the presence of parallel G4s observable by the naked eye and inside cells. The molecular recognition strategy reported here will be useful for a multitude of affinity-based applications with potential in sensing and imaging systems.


Assuntos
Quadruplex G , Genoma Mitocondrial , Corantes Fluorescentes/química , Boro , Flúor , DNA/química
5.
Eur J Med Chem ; 248: 115103, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36645982

RESUMO

G-quadruplex (G4) DNA structures are involved in central biological processes such as DNA replication and transcription. These DNA structures are enriched in promotor regions of oncogenes and are thus promising as novel gene silencing therapeutic targets that can be used to regulate expression of oncoproteins and in particular those that has proven hard to drug with conventional strategies. G4 DNA structures in general have a well-defined and hydrophobic binding area that also is very flat and featureless and there are ample examples of G4 ligands but their further progression towards drug development is limited. In this study, we use synthetic organic chemistry to equip a drug-like and low molecular weight central fragment with different side chains and evaluate how this affect the compound's selectivity and ability to bind and stabilize G4 DNA. Furthermore, we study the binding interactions of the compounds and connect the experimental observations with the compound's structural conformations and electrostatic potentials to understand the basis for the observed improvements. Finally, we evaluate the top candidates' ability to selectively reduce cancer cell growth in a 3D co-culture model of pancreatic cancer which show that this is a powerful approach to generate highly active and selective low molecular weight G4 ligands with a promising therapeutic window.


Assuntos
Quadruplex G , Ligantes , DNA/metabolismo , Oncogenes , Pirimidinas
6.
Chemistry ; 28(65): e202202020, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-35997141

RESUMO

This study aims to deepen the knowledge of the current state of rational G4-ligand design through the design and synthesis of a novel set of compounds based on indoles, quinolines, and benzofurans and their comparisons with well-known G4-ligands. This resulted in novel synthetic methods and G4-ligands that bind and stabilize G4 DNA with high selectivity. Furthermore, the study corroborates previous studies on the design of G4-ligands and adds deeper explanations to why a) macrocycles offer advantages in terms of G4-binding and -selectivity, b) molecular pre-organization is of key importance in the development of strong novel binders, c) an electron-deficient aromatic core is essential to engage in strong arene-arene interactions with the G4-surface, and d) aliphatic amines can strengthen interactions indirectly through changing the arene electrostatic nature of the compound. Finally, fundamental physicochemical properties of selected G4-binders are evaluated, underscoring the complexity of aligning the properties required for efficient G4 binding and stabilization with feasible pharmacokinetic properties.


Assuntos
Quadruplex G , Quinolinas , Ligantes , DNA/química , Indóis/química , Quinolinas/química
7.
Chem Sci ; 13(8): 2347-2354, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35310480

RESUMO

G-quadruplex (G4) DNA structures are implicated in central biological processes and are considered promising therapeutic targets because of their links to human diseases such as cancer. However, functional details of how, when, and why G4 DNA structures form in vivo are largely missing leaving a knowledge gap that requires tailored chemical biology studies in relevant live-cell model systems. Towards this end, we developed a synthetic platform to generate complementary chemical probes centered around one of the most effective and selective G4 stabilizing compounds, Phen-DC3. We used a structure-based design and substantial synthetic devlopments to equip Phen-DC3 with an amine in a position that does not interfere with G4 interactions. We next used this reactive handle to conjugate a BODIPY fluorophore to Phen-DC3. This generated a fluorescent derivative with retained G4 selectivity, G4 stabilization, and cellular effect that revealed the localization and function of Phen-DC3 in human cells. To increase cellular uptake, a second chemical probe with a conjugated cell-penetrating peptide was prepared using the same amine-substituted Phen-DC3 derivative. The cell-penetrating peptide conjugation, while retaining G4 selectivity and stabilization, increased nuclear localization and cellular effects, showcasing the potential of this method to modulate and direct cellular uptake e.g. as delivery vehicles. The applied approach to generate multiple tailored biochemical tools based on the same core structure can thus be used to advance the studies of G4 biology to uncover molecular details and therapeutic approaches.

8.
ACS Chem Biol ; 16(8): 1365-1376, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34328300

RESUMO

G-quadruplex (G4) DNA structures are widespread in the human genome and are implicated in biologically important processes such as telomere maintenance, gene regulation, and DNA replication. Guanine-rich sequences with potential to form G4 structures are prevalent in the promoter regions of oncogenes, and G4 sites are now considered as attractive targets for anticancer therapies. However, there are very few reports of small "druglike" optical G4 reporters that are easily accessible through one-step synthesis and that are capable of discriminating between different G4 topologies. Here, we present a small water-soluble light-up fluorescent probe that features a minimalistic amidinocoumarin-based molecular scaffold that selectively targets parallel G4 structures over antiparallel and non-G4 structures. We showed that this biocompatible ligand is able to selectively stabilize the G4 template resulting in slower DNA synthesis. By tracking individual DNA molecules, we demonstrated that the G4-stabilizing ligand perturbs DNA replication in cancer cells, resulting in decreased cell viability. Moreover, the fast-cellular entry of the probe enabled detection of nucleolar G4 structures in living cells. Finally, insights gained from the structure-activity relationships of the probe suggest the basis for the recognition of parallel G4s, opening up new avenues for the design of new biocompatible G4-specific small molecules for G4-driven theranostic applications.


Assuntos
Amidinas/química , Cumarínicos/química , DNA/análise , Corantes Fluorescentes/química , Quadruplex G , Amidinas/síntese química , Amidinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/metabolismo , DNA/genética , DNA/metabolismo , Replicação do DNA/efeitos dos fármacos , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Limite de Detecção , Microscopia Confocal , Microscopia de Fluorescência , Estrutura Molecular , Relação Estrutura-Atividade
9.
Nucleic Acids Res ; 48(19): 10998-11015, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33045725

RESUMO

G-quadruplex (G4) structures are stable non-canonical DNA structures that are implicated in the regulation of many cellular pathways. We show here that the G4-stabilizing compound PhenDC3 causes growth defects in Schizosaccharomyces pombe cells, especially during S-phase in synchronized cultures. By visualizing individual DNA molecules, we observed shorter DNA fragments of newly replicated DNA in the PhenDC3-treated cells, suggesting that PhenDC3 impedes replication fork progression. Furthermore, a novel single DNA molecule damage assay revealed increased single-strand DNA lesions in the PhenDC3-treated cells. Moreover, chromatin immunoprecipitation showed enrichment of the leading-strand DNA polymerase at sites of predicted G4 structures, suggesting that these structures impede DNA replication. We tested a subset of these sites and showed that they form G4 structures, that they stall DNA synthesis in vitro and that they can be resolved by the breast cancer-associated Pif1 family helicases. Our results thus suggest that G4 structures occur in S. pombe and that stabilized/unresolved G4 structures are obstacles for the replication machinery. The increased levels of DNA damage might further highlight the association of the human Pif1 helicase with familial breast cancer and the onset of other human diseases connected to unresolved G4 structures.


Assuntos
Quebras de DNA de Cadeia Simples , Replicação do DNA , DNA Fúngico/química , Quadruplex G , Schizosaccharomyces/genética , DNA Helicases/fisiologia , Compostos de Anéis Fundidos/farmacologia , Fase S , Proteínas de Schizosaccharomyces pombe/fisiologia
10.
Nanoscale ; 12(24): 12950-12957, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32525170

RESUMO

Direct and unambiguous evidence of the formation of G-quadruplexes (G4s) in human cells have shown their implication in several key biological events and has emphasized their role as important targets for small-molecule cancer therapeutics. Here, we report on the first example of a self-assembled molecular-rotor G4-binder able to discriminate between an extensive panel of G4 and non-G4 structures and to selectively light-up (up to 64-fold), bind (nanomolar range), and stabilize the c-MYC promoter G4 DNA. In particular, association with the c-MYC G4 triggers the disassembly of its supramolecular state (disaggregation-induced emission, DIE) and induces geometrical restrictions (motion-induced change in emission, MICE) leading to a significant enhancement of its emission yield. Moreover, this optical reporter is able to selectively stabilize the c-MYC G4 and inhibit DNA synthesis. Finally, by using confocal laser-scanning microscopy (CLSM) we show the ability of this compound to localize primarily in the subnuclear G4-rich compartments of cancer cells. This work provides a benchmark for the future design and development of a new generation of smart sequence-selective supramolecular G4-binders that combine outstanding sensing and stability properties, to be utilized in anti-cancer therapy.


Assuntos
Quadruplex G , DNA , Ligantes , Regiões Promotoras Genéticas
11.
Chemistry ; 26(43): 9561-9572, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32187406

RESUMO

G-quadruplex (G4) DNA structures are linked to fundamental biological processes and human diseases, which has triggered the development of compounds that affect these DNA structures. However, more knowledge is needed about how small molecules interact with G4 DNA structures. This study describes the development of a new class of bis-indoles (3,3-diindolyl-methyl derivatives) and detailed studies of how they interact with G4 DNA using orthogonal assays, biophysical techniques, and computational studies. This revealed compounds that strongly bind and stabilize G4 DNA structures, and detailed binding interactions which for example, show that charge variance can play a key role in G4 DNA binding. Furthermore, the structure-activity relationships generated opened the possibilities to replace or introduce new substituents on the core structure, which is of key importance to optimize compound properties or introduce probes to further expand the possibilities of these compounds as tailored research tools to study G4 biology.


Assuntos
DNA/química , Indóis/química , Quadruplex G , Humanos , Relação Estrutura-Atividade
12.
J Am Chem Soc ; 142(6): 2876-2888, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31990532

RESUMO

The signal transducer and activator of transcription 3 (STAT3) protein is a master regulator of most key hallmarks and enablers of cancer, including cell proliferation and the response to DNA damage. G-Quadruplex (G4) structures are four-stranded noncanonical DNA structures enriched at telomeres and oncogenes' promoters. In cancer cells, stabilization of G4 DNAs leads to replication stress and DNA damage accumulation and is therefore considered a promising target for oncotherapy. Here, we designed and synthesized novel quinazoline-based compounds that simultaneously and selectively affect these two well-recognized cancer targets, G4 DNA structures and the STAT3 protein. Using a combination of in vitro assays, NMR, and molecular dynamics simulations, we show that these small, uncharged compounds not only bind to the STAT3 protein but also stabilize G4 structures. In human cultured cells, the compounds inhibit phosphorylation-dependent activation of STAT3 without affecting the antiapoptotic factor STAT1 and cause increased formation of G4 structures, as revealed by the use of a G4 DNA-specific antibody. As a result, treated cells show slower DNA replication, DNA damage checkpoint activation, and an increased apoptotic rate. Importantly, cancer cells are more sensitive to these molecules compared to noncancerous cell lines. This is the first report of a promising class of compounds that not only targets the DNA damage cancer response machinery but also simultaneously inhibits the STAT3-induced cancer cell proliferation, demonstrating a novel approach in cancer therapy.


Assuntos
Quadruplex G , Neoplasias/patologia , Quinazolinas/química , Fator de Transcrição STAT3/metabolismo , Morte Celular , Humanos , Ligantes , Neoplasias/metabolismo
13.
Nucleic Acids Res ; 48(3): 1108-1119, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31912160

RESUMO

G-quadruplex (G4) DNA structures are linked to key biological processes and human diseases. Small molecules that target specific G4 DNA structures and signal their presence would therefore be of great value as chemical research tools with potential to further advance towards diagnostic and therapeutic developments. However, the development of these types of specific compounds remain as a great challenge. In here, we have developed a compound with ability to specifically signal a certain c-MYC G4 DNA structure through a fluorescence light-up mechanism. Despite the compound's two binding sites on the G4 DNA structure, only one of them result in the fluorescence light-up effect. This G-tetrad selectivity proved to originate from a difference in flexibility that affected the binding affinity and tilt the compound out of the planar conformation required for the fluorescence light-up mechanism. The intertwined relation between the presented factors is likely the reason for the lack of examples using rational design to develop compounds with turn-on emission that specifically target certain G4 DNA structures. However, this study shows that it is indeed possible to develop such compounds and present insights into the molecular details of specific G4 DNA recognition and signaling to advance future studies of G4 biology.


Assuntos
DNA/química , Corantes Fluorescentes , Quadruplex G , Benzimidazóis/química , Benzotiazóis/química , Corantes Fluorescentes/química , Genes myc , Simulação de Dinâmica Molecular
14.
Chem Sci ; 11(38): 10529-10537, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34094311

RESUMO

The recognition of G-quadruplex (G4) DNA structures as important regulatory elements in biological mechanisms, and the connection between G4s and the evolvement of different diseases, has sparked interest in developing small organic molecules targeting G4s. However, such compounds often lack drug-like properties and selectivity. Here, we describe the design and synthesis of a novel class of macrocyclic bis-indole quinolines based on their non-macrocyclic lead compounds. The effects of the macrocyclization on the ability to interact with G4 DNA structures were investigated using biophysical assays and molecular dynamic simulations. Overall, this revealed compounds with potent abilities to interact with and stabilize G4 structures and a clear selectivity for both G4 DNA over dsDNA and for parallel/hybrid G4 topologies, which could be attributed to the macrocyclic structure. Moreover, we obtained knowledge about the structure-activity relationship of importance for the macrocyclic design and how structural modifications could be made to construct improved macrocyclic compounds. Thus, the macrocyclization of G4 ligands can serve as a basis for the optimization of research tools to study G4 biology and potential therapeutics targeting G4-related diseases.

15.
Angew Chem Int Ed Engl ; 59(2): 896-902, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31644837

RESUMO

The design of turn-on dyes with optical signals sensitive to the formation of supramolecular structures provides fascinating and underexplored opportunities for G-quadruplex (G4) DNA detection and characterization. Here, we show a new switching mechanism that relies on the recognition-driven disaggregation (on-signal) of an ultrabright coumarin-quinazoline conjugate. The synthesized probe selectively lights-up parallel G4 DNA structures via the disassembly of its supramolecular state, demonstrating outputs that are easily integrable into a label-free molecular logic system. Finally, our molecule preferentially stains the G4-rich nucleoli of cancer cells.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Quadruplex G , Espectrometria de Fluorescência/métodos , Humanos
16.
DNA Repair (Amst) ; 82: 102678, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31473486

RESUMO

In order to understand in which biological processes the four-stranded G-quadruplex (G4) DNA structures play a role, it is important to determine which predicted regions can actually adopt a G4 structure. Here, to identify DNA regions in Schizosaccharomyces pombe that fold into G4 structures, we first optimized a quantitative PCR (qPCR) assay using the G4 stabilizer, PhenDC3. We call this method the qPCR stop assay, and used it to screen for G4 structures in genomic DNA. The presence of G4 stabilizers inhibited DNA amplification in 14/15 unexplored genomic regions in S. pombe that encompassed predicted G4 structures, suggesting that at these sites the stabilized G4 structure formed an obstacle for the DNA polymerase. Furthermore, the formation of G4 structures was confirmed by complementary in vitro assays. In vivo, the S. pombe G4 unwinder Pif1 helicase, Pfh1, was associated with tested G4 sites, suggesting that the G4 structures also formed in vivo. Thus, we propose that the confirmed G4 structures in S. pombe form an obstacle for replication in vivo, and that the qPCR stop assay is a method that can be used to identify G4 structures. Finally, we suggest that the qPCR stop assay can also be used for identifying G4 structures in other organisms, as well as being adapted to screen for novel G4 stabilizers.


Assuntos
DNA Fúngico/química , DNA Fúngico/genética , Quadruplex G , Genoma Fúngico/genética , Schizosaccharomyces/genética , Sequência de Bases , DNA Helicases/metabolismo , Reação em Cadeia da Polimerase , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(21): 10510-10517, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31061116

RESUMO

Mycobacterium tuberculosis (Mtb) killed more people in 2017 than any other single infectious agent. This dangerous pathogen is able to withstand stresses imposed by the immune system and tolerate exposure to antibiotics, resulting in persistent infection. The global tuberculosis (TB) epidemic has been exacerbated by the emergence of mutant strains of Mtb that are resistant to frontline antibiotics. Thus, both phenotypic drug tolerance and genetic drug resistance are major obstacles to successful TB therapy. Using a chemical approach to identify compounds that block stress and drug tolerance, as opposed to traditional screens for compounds that kill Mtb, we identified a small molecule, C10, that blocks tolerance to oxidative stress, acid stress, and the frontline antibiotic isoniazid (INH). In addition, we found that C10 prevents the selection for INH-resistant mutants and restores INH sensitivity in otherwise INH-resistant Mtb strains harboring mutations in the katG gene, which encodes the enzyme that converts the prodrug INH to its active form. Through mechanistic studies, we discovered that C10 inhibits Mtb respiration, revealing a link between respiration homeostasis and INH sensitivity. Therefore, by using C10 to dissect Mtb persistence, we discovered that INH resistance is not absolute and can be reversed.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Isoniazida , Mycobacterium tuberculosis/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos
18.
Int J Biol Macromol ; 118(Pt A): 629-639, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29953891

RESUMO

G-quadruplex (G4) structures are known to be promising anticancer drug targets and flavonols (an important class of flavonoids) are small molecules reported to possess several health-promoting properties including those of anticancer activities. In this work, we explored the interactions of the structurally related plant flavonols kaempferol (KAE; 3,5,7,4'OH flavone) and morin (MOR; 3,5,7,2',4'OH flavone) with various G4-DNA sequences along with duplex DNA using a combination of spectroscopic and molecular docking studies. Our results revealed that KAE shows preferential interaction with VEGF G4-DNA in comparison to the other G4 sequences and duplex DNA. Moreover, KAE enhances the thermal stability of VEGF G4-DNA. In contrast, MOR exhibits an appreciably weaker level of interaction with both duplex and various G4-DNAs, with no significant structural specificity. The contrasting DNA binding behaviors suggest a crucial role of the 2'OH substituent in the B-ring of flavonol moiety. While KAE is relatively planar, MOR adopts a significantly non-planar conformation attributable to steric hindrance from the additional 2'OH substituent. This small structural difference is apparently very important for the ability of KAE and MOR to interact with VEGF G4-DNA. Thus, KAE (but not MOR) appears to be an effective ligand for VEGF G4-DNA, opening up possibilities of its application for regulation of gene expression in cancer cells.


Assuntos
DNA/metabolismo , Flavonóis/química , Flavonóis/metabolismo , Quadruplex G , Radical Hidroxila/química , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular/genética , DNA/química , Flavonoides/química , Flavonoides/metabolismo , Quempferóis/química , Quempferóis/metabolismo , Análise Espectral , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Chemistry ; 24(31): 7926-7938, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29603472

RESUMO

Small molecules that target G-quadruplex (G4) DNA structures are not only valuable to study G4 biology but also for their potential as therapeutics. This work centers around how different design features of small molecules can affect the interactions with G4 DNA structures, exemplified by the development of synthetic methods to bis-indole scaffolds. Our synthesized series of bis-indole scaffolds are structurally very similar but differ greatly in the flexibility of their core structures. The flexibility of the molecules proved to be an advantage compared to locking the compounds in the presumed bioactive G4 conformation. The flexible derivatives demonstrated similar or even improved G4 binding and stabilization in several orthogonal assays even though their entropic penalty of binding is higher. In addition, molecular dynamics simulations with the c-MYC G4 structure showed that the flexible compounds adapt better to the surrounding. This was reflected by an increased number of both stacking and polar interactions with both the residues in the G4 DNA structure and the DNA residues just upstream of the G4 structure.


Assuntos
DNA/química , Quadruplex G , Indóis/química , Sítios de Ligação , Humanos , Ligantes , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Termodinâmica
20.
PLoS One ; 12(9): e0184117, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863169

RESUMO

Alpha-synuclein (aS) amyloid formation is involved in Parkinson's disease (PD); therefore, small molecules that target aS and affect its aggregation are of interest as future drug candidates. We recently reported modified ring-fused 2-pyridones that modulate aS amyloid formation in vitro. Here, we describe the effects of such molecules on behavioral parameters of a Drosophila model of PD (i.e., flies expressing human aS), using a new approach (implemented in a commercially available FlyTracker system) to quantify fly mobility. FlyTracker allows for automated analysis of walking and climbing locomotor behavior, as it collects large sequences of data over time in an unbiased manner. We found that the molecules per se have no toxic or kinetic effects on normal flies. Feeding aS-expressing flies with the amyloid-promoting molecule FN075, remarkably, resulted in increased fly mobility at early time points; however, this effect switched to reduced mobility at later time points, and flies had shorter life spans than controls. In contrast, an amyloid inhibitor increased both fly kinetics and life span. In agreement with increased aS amyloid formation, the FN075-fed flies had less soluble aS, and in vitro aS-FN075 interactions stimulated aS amyloid formation. In addition to a new quantitative approach to probe mobility (available in FlyTracker), our results imply that aS regulates brain activity such that initial removal (here, by FN075-triggered assembly of aS) allows for increased fly mobility.


Assuntos
Amiloide/química , Doença de Parkinson/metabolismo , alfa-Sinucleína/fisiologia , 2-Piridinilmetilsulfinilbenzimidazóis , Animais , Animais Geneticamente Modificados , Comportamento Animal , Encéfalo/patologia , Modelos Animais de Doenças , Drosophila melanogaster , Feminino , Humanos , Levodopa/química , Locomoção , Atividade Motora , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Piridonas/química , Proteínas Recombinantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...