Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 109(15): 156804, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-23102352

RESUMO

We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impurity Kondo model. At zero magnetic field the interdot coupling disrupts the Kondo physics and a local singlet state arises, but we are able to tune the crossover to a Kondo screened phase by application of a magnetic field. All results show good agreement with a numerical renormalization group study of the device.

2.
Phys Rev Lett ; 108(3): 036802, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22400770

RESUMO

We investigate radio-frequency (rf) reflectometry in a tunable carbon nanotube double quantum dot coupled to a resonant circuit. By measuring the in-phase and quadrature components of the reflected rf signal, we are able to determine the complex admittance of the double quantum dot as a function of the energies of the single-electron states. The measurements are found to be in good agreement with a theoretical model of the device in the incoherent limit. In addition to being of fundamental interest, our results present an important step forward towards noninvasive charge and spin state readout in carbon nanotube quantum dots.

3.
Phys Rev Lett ; 106(20): 206801, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21668251

RESUMO

We make use of spin selection rules to investigate the electron spin system of a carbon nanotube double quantum dot. Measurements of the electron transport as a function of the magnetic field and energy detuning between the quantum dots reveal an intricate pattern of the spin state evolution. We demonstrate that the complete set of measurements can be understood by taking into account the interplay between spin-orbit interaction and a single impurity spin coupled to the double dot. The detection and tunability of this coupling are important for quantum manipulation in carbon nanotubes.

4.
Phys Rev Lett ; 102(14): 146602, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19392464

RESUMO

Measurements are presented of a device designed to cool a 6 microm;{2} region of 2D electron gas using quantum dots. Electrostatic effects are found to be significant in the device, and a model that accounts for them is developed. At ambient electron temperatures above 120 mK the results are consistent with the model and the base temperature of the cooled region is estimated. At an ambient electron temperature of 280 mK, the 6 microm;{2} region is found to be cooled below 190 mK. Below 120 mK the results deviate from predictions, which is attributed to reduced electron-electron scattering rates.

5.
Science ; 312(5778): 1359-62, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16741116

RESUMO

We present data from an induced gallium arsenide (GaAs) quantum wire that exhibits an additional conductance plateau at 0.5(2e2/h), where e is the charge of an electron and h is Planck's constant, in zero magnetic field. The plateau was most pronounced when the potential landscape was tuned to be symmetric by using low-temperature scanning-probe techniques. Source-drain energy spectroscopy and temperature response support the hypothesis that the origin of the plateau is the spontaneous spin-polarization of the transport electrons: a ferromagnetic phase. Such devices may have applications in the field of spintronics to either generate or detect a spin-polarized current without the complications associated with external magnetic fields or magnetic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...