Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(15): 8901-8907, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424895

RESUMO

K2Eu(PO4)(WO4) has been prepared via the high-temperature solution growth (HTSG) method using K2WO4-KPO3 molten salts as a self-flux and characterized by single-crystal X-ray diffraction analysis, IR and luminescence spectroscopy. The structure of this new compound features a 2D framework containing [EuPO6]4- layers, which are composed of zigzag chains of [EuO8]n interlinked by slightly distorted PO4 tetrahedra. Isolated WO4 tetrahedra are attached above and below these layers, leaving space for the K+ counter-cations. The photoluminescence (PL) characteristics (spectra, line intensity distribution and decay kinetics) confirm structural data concerning one distinct position for europium ions. The luminescence color coordinates suggest K2Eu(PO4)(WO4) as an efficient red phosphor for lighting applications.

2.
RSC Adv ; 10(43): 25763-25772, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35518574

RESUMO

The concentration series of langbeinite-related solid solutions K2Sc2(MoO4)(PO4)2:xEu (x = 0.1, 0.2, 0.6, 0.8, and 1.0 mol%) has been prepared via a solid state route and the effects of europium content on the phase composition, morphology, crystal structure and luminescence properties have been studied by scanning electron microscopy, X-ray powder diffraction, UV-vis, IR and luminescence spectroscopy. The band gap values have been estimated from UV-vis spectra and are in the range of 3.7-3.8 eV for all concentrations studied. The electronic band structure calculations have shown that Sc d, Mo d and Ophos p states dominate in the band edge region and determine the optical transitions in the K2Sc2(MoO4)(PO4)2 host. The photoluminescence (PL) spectra, intensity and decay time dependences on the Eu3+ concentration revealed complex behavior of europium-containing emitting centers. The PL characteristics indicated the presence of at least two types of luminescence centers. One of them (EuK) is shown to be formed by the Eu3+ ion located within K sites, while the other one is formed by the Eu3+ ions that reside in Sc sites (EuSc). The luminescence color coordinates calculated for K2Sc2(MoO4)(PO4)2:xEu indicated that these ceramics can be potential candidates for UV-based lighting applications as efficient red phosphors.

3.
Nanoscale Res Lett ; 12(1): 297, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28446000

RESUMO

Confocal micro-Raman spectroscopy is used as a sensitive tool to study the nature of laser-induced defects in single-layer graphene. Appearance and drastic intensity increase of D- and D' modes in the Raman spectra at high power of laser irradiation is related to generation of structural defects. Time- and power-dependent evolution of Raman spectra is studied. The dependence of relative intensity of defective D- and D' bands is analyzed to relate the certain types of structural defects. The surface density of structural defects is estimated from the intensity ratio of D- and G bands using the D-band activation model. Unusual broadening of the D band and splitting of the G band into G- and G+ components with redistribution of their intensities is observed at high laser power and exposition. Position of the G+ band is discussed in relation with nonuniform doping of graphene with charge impurities. Simultaneous presence in the Raman spectra of heavily irradiated graphene of rather narrow G band and broaden D band is explained by coexistence within the Raman probe of more and less damaged graphene areas. This assumption is additionally confirmed by confocal Raman mapping of the heavily irradiated area.

4.
Nanoscale Res Lett ; 12(1): 98, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28181161

RESUMO

The set of composite materials that consist of micro/nanocellulose and complex K2Eu(MoO4)(PO4) luminescent oxide particles was prepared. The composites were studied by means of scanning electron microscopy, XRD analysis, dilatometry, differential scanning calorimetry and thermogravimetric analysis, and dielectric and luminescence spectroscopy.Dependencies of density, crystallinity, relative extension, thermal extension coefficient, dielectric relaxation parameters, intensity and shape of photoluminescence bands on temperature, and content of oxide component were studied. The structure of the composite without oxide is formed by grains of nearly 5-50 µm in size (crystallinity is about ~56%). Structure of the micro/nanocellulose samples which contain oxide particles is similar, but the cellulose grains are deformed by oxide particles. Dependencies of the abovementioned properties on temperature and oxide content were analyzed together with data on the size distribution of oxide particles for the samples for various oxide and molecules of water concentrations.

5.
Nanoscale Res Lett ; 12(1): 28, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28078607

RESUMO

Micro/nanosized carbon materials were prepared by electrochemical exfoliation method in the forms of the colloids and thin films. Scanning electronic microscopy, optical and luminescent microscopy, and Raman scattering and luminescent spectroscopy were applied for characterization of materials. The wide photoluminescence band in the visible spectral region was observed for each of the samples. The shape of the photoluminescence band depends on excitation wavelength and on the size of the particles. At least two components with maxima at ~580 and ~710 nm can be distinguished in the photoluminescence spectra. The relations between the photoluminescence properties and morphology of the samples have been described and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...