Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 100(12): 2108-16, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17070917

RESUMO

The alpha-ketoglutate (alpha-KG)-dependent dioxygenases are a large class of mononuclear non-heme iron enzymes that require Fe(II), alpha-KG and dioxygen for catalysis, with the alpha-KG cosubstrate supplying the two additional electrons required for dioxygen activation. A sub-class of these enzymes exists in which the alpha-keto acid is covalently attached to the substrate, including (4-hydroxy)mandelate synthase (HmaS) and (4-hydroxyphenyl)pyruvate dioxygenase (HPPD) which utilize the same substrate but exhibit two different general reactivities (H-atom abstraction and electrophilic attack). Previous kinetic studies of Streptomyces avermitilis HPPD have shown that the substrate analog phenylpyruvate (PPA), which only differs from the normal substrate (4-hydroxyphenyl)pyruvate (HPP) by the absence of a para-hydroxyl group on the aromatic ring, does not induce a reaction with dioxygen. While an Fe(IV)O intermediate is proposed to be the reactive species in converting substrate to product, the key step utilizing O(2) to generate this species is the decarboxylation of the alpha-keto acid. It has been generally proposed that the two requirements for decarboxylation are bidentate coordination of the alpha-keto acid to Fe(II) and the presence of a 5C Fe(II) site for the O(2) reaction. Circular dichroism and magnetic circular dichroism studies have been performed and indicate that both enzyme complexes with PPA are similar with bidentate alpha-KG coordination and a 5C Fe(II) site. However, kinetic studies indicate that while HmaS reacts with PPA in a coupled reaction similar to the reaction with HPP, HPPD reacts with PPA in an uncoupled reaction at an approximately 10(5)-fold decreased rate compared to the reaction with HPP. A key difference is spectroscopically observed in the n-->pi( *) transition of the HPPD/Fe(II)/PPA complex which, based upon correlation to density functional theory calculations, is suggested to result from H-bonding between a nearby residue and the carboxylate group of the alpha-keto acid. Such an interaction would disfavor the decarboxylation reaction by stabilizing electron density on the carboxylate group such that the oxidative cleavage to yield CO(2) is disfavored.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Ácidos Carboxílicos/química , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/química , Sítios de Ligação , Dicroísmo Circular , Cinética , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
2.
Proc Natl Acad Sci U S A ; 103(35): 12966-73, 2006 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-16920789

RESUMO

(4-Hydroxy)mandelate synthase (HmaS) and (4-hydroxyphenyl)pyruvate dioxygenase (HPPD) are two alpha-keto acid dependent mononuclear non-heme iron enzymes that use the same substrate, (4-hydroxyphenyl)pyruvate, but exhibit two different general reactivities. HmaS performs hydrogen-atom abstraction to yield benzylic hydroxylated product (S)-(4-hydroxy)mandelate, whereas HPPD utilizes an electrophilic attack mechanism that results in aromatic hydroxylated product homogentisate. These enzymes provide a unique opportunity to directly evaluate the similarities and differences in the reaction pathways used for these two reactivities. An Fe(II) methodology using CD, magnetic CD, and variable-temperature, variable-field magnetic CD spectroscopies was applied to HmaS and compared with that for HPPD to evaluate the factors that affect substrate interactions at the active site and to correlate these to the different reactivities exhibited by HmaS and HPPD to the same substrate. Combined with density functional theory calculations, we found that HmaS and HPPD have similar substrate-bound complexes and that the role of the protein pocket in determining the different reactivities exhibited by these enzymes (hydrogen-atom abstraction vs. aromatic electrophilic attack) is to properly orient the substrate, allowing for ligand field geometric changes along the reaction coordinate. Elongation of the Fe(IV) O bond in the transition state leads to dominant Fe(III) O(*-) character, which significantly contributes to the reactivity with either the aromatic pi-system or the C H sigma-bond.


Assuntos
Hidrogênio/química , Ferroproteínas não Heme/química , 4-Hidroxifenilpiruvato Dioxigenase/química , Dicroísmo Circular , Biologia Computacional , Análise Espectral , Termodinâmica
3.
FEBS Lett ; 580(14): 3445-50, 2006 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-16730004

RESUMO

Hydroxymandelate synthase (HmaS) and hydroxyphenylpyruvate dioxygenase (HppD) are non-heme iron-dependent dioxygenases, which share a common substrate and first catalytic step. The catalytic pathways then diverge to yield hydroxymandelate for secondary metabolism, or homogentisate in tyrosine catabolism. To probe the differences between these related active sites that channel a common intermediate down alternative pathways, we attempted to interconvert their activities by directed evolution. HmaS activity was readily introduced to HppD by just two amino acid changes. A parallel attempt to engineer HppD activity in HmaS was unsuccessful, suggesting that homogentisate synthesis places greater chemical and steric demands on the active site.


Assuntos
Dioxigenases/metabolismo , Evolução Molecular Direcionada , Ligases/metabolismo , Catálise , Dioxigenases/química , Modelos Moleculares , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...