Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(9)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933185

RESUMO

It is crucial to remove heavy metals and dyes before discharging industrial effluents. Gauze substrate was surface-modified by coating with a polymeric adsorbent and a spray coating of BiOBr photocatalyst to develop a novel dual-functional membrane, polymer/BiOBr-modified gauze, for water remediation. The polymeric adsorbent was crosslinked to prevent the dissolving of the adsorbent during operation in contaminated water. The morphology and surface chemistry of the modified gauze were characterized before and after the adsorption of Ni2+. The surface wettability, isotherms, and kinetics of Ni2+ adsorption were studied. We also studied the effect of pH, initial Ni2+ concentration, monomer molar ratio, and monomer chemical structure on the Ni2+ adsorption capacity. To achieve a high Ni2+ adsorption capacity and good photocatalytic decolorization activity, the amount of decorated BiOBr was tuned by changing the spray-coating time to optimize the exposed BiOBr and polymer on the surface. The optimized dual-functional membrane PB20 possesses excellent adsorption capacity (650 mg g-1) for Ni2+ ions and photocatalytic decolorization activity (100% degradation of RhB within 7 min). Decorating the optimized amount of BiOBr on the surface can introduce photocatalytic decolorization activity without sacrificing the adsorption capacity for Ni2+.

2.
Chemosphere ; 152: 490-5, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27003371

RESUMO

Hollow core-shell mesoporous TiO2 microspheres were synthesized by a template-free solvothermal route for efficient photocatalytic degradation of acetaminophen. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Barrett-Joyner-Halenda data revealed a micrometer-sized mesoporous anatase TiO2 hollow sphere with large surface area and efficient light harvesting. For the photocatalytic degradation of acetaminophen in 60 min, the conversion fraction of the drug increased from 88% over commercial Degussa P25 TiO2 to 94% over hollow spheres with about 25% increase in the initial reaction rate. Even after 10 repeated runs, the recycled hollow spheres showed good photodegradation activity. The intermediates generated in the photocatalytic reactions were eventually converted into molecules that are easier to handle. The simple fabrication route would facilitate the development of photocatalysts for the decomposition of environmental contaminants.


Assuntos
Acetaminofen/química , Luz , Microesferas , Titânio/química , Titânio/efeitos da radiação , Poluentes Químicos da Água/química , Catálise , Microscopia Eletrônica de Varredura , Fotólise , Porosidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...