Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(11): 4254-4263, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37341444

RESUMO

BACKGROUND: To gain a better understanding of how Pyricularia oryzae population shifts is important for selecting suitable resistance genes for rice breeding programs. However, the relationships between P. oryzae pathogenic dynamics, geographic distribution, rice varieties, and timeline are not well studied. RESULTS: Resistance genes Piz-5, Pi9(t), Pi12(t), Pi20(t), Pita-2, and Pi11 showed stable resistance to the Taiwan rice blast fungus over 8 years of observations. Furthermore, 1749 rice blast isolates were collected from 2014 to 2021 and categorized into five pathotype clusters based on their correlation analysis between the geographic sources and virulence of Lijiangxintuanheigu monogenic lines. A detailed map of their distributions in Taiwan is presented. Isolates collected from the western region of Taiwan had greater pathotype diversity than those from the east region. Isolates collected from the subtropical region had greater diversity than those from the tropical region. Rice cultivars carrying Pik alleles were highly susceptible to pathotype L4. Cultivars with Piz-t were highly susceptible to pathotype L5, and those with Pish were highly susceptible to pathotype L1. The geographical distribution of each pathotype was distinct, and the population size of each pathotype fluctuated significantly each year. CONCLUSION: The regional mega cultivars significantly impact the evolution of Pyricularia oryzae in Taiwan within the span of 8 years. However, the annual fluctuation of pathotype populations likely correlate to the rising annual temperatures that selected pathotype clusters by their optimal growth temperature. The results will provide useful information for effective disease management, and enable the R-genes to prolong their function in the fields. © 2023 Society of Chemical Industry.


Assuntos
Magnaporthe , Oryza , Magnaporthe/genética , Taiwan , Oryza/genética , Doenças das Plantas/microbiologia , Melhoramento Vegetal
2.
Plant Dis ; 106(12): 3187-3197, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35581907

RESUMO

Rice blast caused by Magnaporthe oryzae is a dangerous threat to rice production and food security worldwide. Breeding and proper deployment of resistant varieties are effective and environmentally friendly strategies to manage this notorious disease. However, a highly dynamic and quickly evolved rice blast pathogen population in the field has made disease control with resistance germplasms more challenging. Therefore, continued monitoring of pathogen dynamics and application of effective resistance varieties are critical tasks to prolong or sustain field resistance. Here, we report a team project that involved evaluation of rice blast resistance genes and surveillance of M. oryzae field populations in Taiwan. A set of International Rice Research Institute-bred blast-resistant lines (IRBLs) carrying single blast resistance genes was utilized to monitor the field effectiveness of rice blast resistance. Resistance genes such as Ptr (formerly Pita2) and Pi9 exhibited the best and most durable resistance against the rice blast fungus population in Taiwan. Interestingly, line IRBLb-B harboring the Pib gene with good field protection has recently shown susceptible lesions in some locations. To dissect the genotypic features of virulent isolates against the Pib resistance gene, M. oryzae isolates were collected and analyzed. Screening of the AvrPib locus revealed that the majority of field isolates still maintained the wild-type AvrPib status but eight virulent genotypes were found. Pot3 insertion appeared to be a major way to disrupt the AvrPib avirulence function. Interestingly, a novel AvrPib double-allele genotype among virulent isolates was first identified. Pot2 repetitive element-based polymerase chain reaction (rep-PCR) fingerprinting analysis indicated that mutation events may occur independently among different lineages in different geographic locations of Taiwan. This study provides our surveillance experience of rice blast disease and serves as the foundation to sustain rice production.


Assuntos
Magnaporthe , Oryza , Magnaporthe/genética , Doenças das Plantas/microbiologia , Oryza/genética , Oryza/microbiologia , Taiwan , Melhoramento Vegetal
3.
Microbiol Res ; 251: 126815, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34284299

RESUMO

Bacillus subtilis is ubiquitous and capable of producing various metabolites, which make the bacterium a good candidate as a biocontrol agent for managing plant diseases. In this study, a phyllosphere bacterium B. subtilis PMB102 isolated from tomato leaf was found to inhibit the growth of Alternaria brassicicola ABA-31 on PDA and suppress Alternaria leaf spot on Chinese cabbage (Brassica rapa). The genome of PMB102 (Accession no. CP047645) was completely sequenced by Nanopore and Illumina technology to generate a circular chromosome of 4,103,088 bp encoding several gene clusters for synthesizing bioactive compounds. PMB102 and the other B. subtilis strains from different sources were compared in pangenome analysis to identify a suite of conserved genes involved in biocontrol and habitat adaptation. Two predicted gene products, surfactin and fengycin, were extracted from PMB102 culture filtrates and verified by LC-MS/MS. The antifungal activity of fengycin was tested on A. brassicicola ABA-31 in bioautography to inhibit hyphae growth, and in co-culturing assays to elicit the formation of swollen hyphae. Our data revealed that B. subtilis PMB102 suppresses Alternaria leaf spot by the production of antifungal metabolites, and fengycin plays an important role to inhibit the vegetative growth of A. brassicicola ABA-31.


Assuntos
Alternaria , Bacillus subtilis , Genoma Bacteriano , Alternaria/efeitos dos fármacos , Antifúngicos/química , Antifúngicos/farmacologia , Bacillus subtilis/química , Bacillus subtilis/genética , Cromatografia Líquida , Genoma Bacteriano/genética , Genômica , Espectrometria de Massas em Tandem
4.
Phytopathology ; 110(12): 1934-1945, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32689901

RESUMO

Bakanae disease in rice can cause abnormal elongation of the stem and leaves, development of adventitious roots, a larger leaf angle, and even death. Little is known about the infection, colonization, and distribution of Fusarium fujikuroi in rice plants across different growth stages. In this study, microscopic observation and quantitative real-time PCR were combined to investigate the pathogenesis of bakanae, using artificially inoculated seedlings of a susceptible rice cultivar, Zerawchanica karatals (ZK), a resistant cultivar, Tainung 67 (TNG67), naturally infected adult field plants (cultivars Kaohsiung 139, Taikeng 2, and Tainan 11), and an F. fujikuroi isolate expressing green fluorescent protein. In rice seedlings, F. fujikuroi hyphae were found to directly penetrate the epidermis of basal stems and roots, then extend inter- and intracellularly to invade the vascular bundles. Occlusion of vascular bundles and radial hyphal expansion from vascular bundles to surrounding parenchyma were observed in adult plants. Analysis of consecutive 3-cm segments of the whole plant revealed that F. fujikuroi was largely confined to the embryo, basal stem, and basal roots in seedlings, and distributed unevenly in the lower aerial parts (including nodes and internodes) of adult plants. The elongation and development of adventitious roots did not necessarily correlate with the amount of F. fujikuroi in diseased plants. Treatment of rice seeds with gibberellic acid-3 (GA3) at 0.5 mg/liter resulted in significantly more elongation of ZK than TNG67 seedlings, suggesting that the susceptibility of ZK to bakanae is associated with its higher sensitivity to GA3.


Assuntos
Fusarium , Oryza , Doenças das Plantas , Plântula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...